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Abstract

In some engineering applications, it is desirable to calculate the local velocity of geometric objects or boundaries
of physical phenomena to understand the deformation speed of the objects or the mechanisms of the physical
phenomena. Furthermore, knowledge of the velocity distribution will help designers create better mechanical
systems. To determine the velocity of the boundary of a 2D object or 2D phenomenon, we first construct an
implicit surface taking the time component into consideration by the radial basis function, then we calculate the
local velocities of the boundary using the generated implicit surface. We apply our method to calculate flame
velocity in a combustion chamber.
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1. Introduction

In recent years, the development of image acquisition techniques has enabled researchers to obtain images such
as flames in combustion chambers, material transported in human cells, etc. It is frequently necessary to calculate the
velocity of the 2D objects in these images. One often use the optical flow method to estimate the motion of the object in
a sequence of images. But it is difficult to match points between images, especially flame images.

Our approach to this problem is to use 3D implicit surface taking the time component into consideration. This
was presented previously as a method of morphing (Turk and O’Brien, 1999). However, it has been described that the
velocity of a time-dependent implicit surface cannot be defined unambiguously (Stam and Schmidt, 2011). In this paper,
we propose a method to calculate the velocity of an implicit surface by splitting it into global translational components,
global rotational components and local deformational components.
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Fig. 1 3D surface
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2. Implicit Interpolation by Radial Basis Function

We represent a time-variable 2D shape as a 3D surface. For example, Fig. 1 depicts a translating and expanding
circle. This surface is generated by interpolating contour points in the consecutive images of the circles. We use the radial
basis function for the interpolation as reported previously (Carr, 2001).

2.1. Radial Basis Function
The radial basis function is the monotone function of the distance from the origin. Among several types of function,
we use the triharmonic spline suitable to interpolate a function of three variables, defined by

ory=r (1)

2.2. Interpolation of Points
Given a set of points {c1, €3, ..., ¢t} € R? and a set of function values {/;, ko, ..., l;} C R, we find a functionf : R* - R
such that

fle)=hi (i=1,2,...k) 2

For Example, when one assign points on the surface with zero values, f = 0 is the expected surface.
Although there are an infinite number of functions that satisfy Eq. (2), typically we consider the function that
minimizes the energy E defined by

E= [ f2a@® + 3@ + fr) + .+ f2(0) dx 3)

where, for example, f;,, represents the third-order partial derivative of f with respect to x.
We can solve this problem using weighted sums of the radial basis function as

k
f@x) = ) dig(x — ¢jl) + P(x) “4)
j=1

where x is an arbitrary point in a 3D space {x,y, z}, d; is a weight and P(x) is a quadratic polynomial defined by
P(x) = po+ p1x+pay + ...+ pozx ®)

Then, Eq. (2) can be rewritten as
k
2. diglei —¢i) + Ple) = h (i=1,2,...k) (6)
j=1
Furthermore, to minimize Eq. (3), Eq. (7) must be satisfied.

d,‘Zix,‘ =0 (7)
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Coefficients d; and p;, which satisfy Eq. (6) and Eq. (7), are calculated by solving the following system of equations.
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where ¢;; = ¢(le; — ¢;]) and ¢; = (c7, c-j'/., )
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3. Extraction of Points from Consecutive Images

In this section, we describe a method to extract 3D points from consecutive images.

One can assign a corresponding time ¢ to each image. A point extracted in the image corresponding to a certain time
t = T has a 2D coordinate (X, Y) as shown in Fig. 2 left. Adding a time dimension to this coordinate, the point can be
treated as 3D coordinates (X, ¥, T') as shown in Fig. 2 right.

Fig. 2 Extraction of points

However, with extraction of only contour points, the right-hand values of Eq. (8) are all zero, and therefore we only
derive a trivial solution. Then, we provide points translated along a normal direction outside (positive value) and inside
(negative value) as shown in Fig. 3. The normal vector is approximately calculated using neighboring contour points, and
the amount of offsets is the distance corresponding to 1 pixel in the image in this paper.

AN @ —On Surface Point
AR @ —Outside Offset Point
° @ —Inside Offset Point

Fig. 3 Offset points

4. Method of Velocity Calculation

It is assumed that the velocity of the 2D object in the consecutive images has three components. the first is the
global translational component, the second is the global rotational component, and the third is the local deformational
component. We assume that the first corresponds to the translation of the center of gravity of the object, the second
corresponds to the rotation of the principal axis of inertia of the object, and the third is oriented in the normal direction of
the object’s contour. In this section, we describe a method to calculate the velocity.

4.1. Translational Component

The location of the center of gravity of the object can be calculated in each image. Then, we interpolate the center
of gravity coordinate G(g,,g,), and generate functions g.(¢) and g,(¢) respectively. The translational component of the
velocity V, is derived as a time derivative of the functions, i.e.,

dg.(t) dg,(1)

V, = s
’(dt dt

) €))

We use the spline curve for the interpolation. The spline function is a set of piecewise polynomial functions. Using
this, we interpolate points as shown in Fig. 4.
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Fig.4 Spline function

The polynomial is often third-order, and its first and second derivatives are continuous at the boundary between
segments. Thus, the interpolation function x(¢) and its derivative are defined as

x(f) =af +b +ct+d (10)
d
Z—(t’) = 3af® +2bt + ¢ (11)

4.2. Rotational Component

The angle of the principal axis of inertia of the object can be also calculated in each image. As is the case in the
translational component, we interpolate the angle 6, and generate a spline function 8(¢). As shown in Fig. 5 ,the rotational
component of the velocity V, on a point P(p,, p,) is derived as

do do

V, =g, - py)T, (px— gx)T) (12)

The principal axis might be unstably calculated for nearly circular shapes.

Fig. 5 Rotational Component

4.3. Deformational Component

The translational component and the rotational component described in Subsections 4.1 and 4.2 are rigid motional
components. In order to take into account only the non-rigid deformation, we subtract these rigid motions from the original
points’ coordinates. We generate an implicit surface f(x,y,#) = O that interpolates these points, and the deformational
component of the velocity V is

dx dy
- 1
Vi (dt,dt) (13)

Hereinafter, we derive the velocity V.
Total differential of f with respect to time ¢ is

df _ofdx ofdy  of

= = — 14
dt Oxdt Oydt Ot (14
On the surface, this value is equal to zero, i.e.,
afd of d 0
ofdx dfdy of _, (15)

oxdt Oydt Ot
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And, we define the deformational component as a normal component of the velocity of the surface, i.e.,

of of
Vy=c|l=—, = 16
= (6x ﬁy) (16)
From Eq. (15) and Eq. (16), we can derive the deformational component as
_oraf _oror
V, = Or dx ot Oy (17)

(5 + (30 (3 + (3
4.4. Results for Sample Data
As examples, we show the results of velocities of some sample objects.
First, we calculate the velocities of a translating and expanding circle. Fig. 6 top row shows the results obtained
using our method, while the bottom row shows the results where only the normal component of the velocity is taken into
consideration. In the figure, the gray region, the black lines, the red lines, the green lines and the blue lines represents the

object ,the total velocities, the normal velocities, the translational velocities and the rotational velocities respectively. Our
method can be used to obtain a natural result with the provided motion.
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Fig. 6 The sequence of a translating and expanding circle and calculated velocities. Top:our method’s
velocities.Bottom:simple normal velocities.

Next, we calculate the velocities of a rotating ellipse as shown in Fig. 7. Our method also can obtain a natural result
with rotational motion.
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Fig. 7 The sequence of a rotating ellipse and calculated velocities. Top:our method’s velocities.Bottom:simple
normal velocities.

5. Results of Flame Velocity Calculation

We applied our method to calculate the flame velocity in a combustion chamber. In this section, we describe the
experimental method and its results.

We used the experimental instrument described previously (Yumoto, 2011), as shown in Fig. 8. The combustion
chamber is observed through an air-cooled borescope (SMETec). It has a 70-degree view angle and 70-degree view
direction. Images are captured by a monochrome camera with C-MOS image sensor (Photron: FASTCAM-MAX). An
image intensifier (Hamamatsu Photonics: C9548-03) is used to intensify weak emission of the initial flame.

Combustion analyzir 1 PC

-

High-speed camera

Charge amplifier-T

~—Image Intensifier

Pressure senso Field of view

Borescope

Combustion chamber

Fig. 8 Experimental instrument

Using this instrument, we acquired 25 consecutive images of a propagating flame. Fig. 9 depicts images in 7th, 14th,
and 21st frames. The image resolution is 256 x 256 pixels and the frame rate is 8000 fps.

We smoothed the images by threshold processing and Gaussian filter, and extracted the edges with a Laplacian filter.
After binarization, the images were processed as shown in Fig. 10.

We extracted contour points in these images, and generated an implicit surface that interpolates them. Fig. 11 depicts
the surface shown from several view-points. The number of control points for RBF interpolation was 1816 (908 contour
points, 454 outside offset points, and 454 inside offset points). The object’s shape at an arbitrary time can be determined
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Fig. 9 Flame images

Fig. 10 Flame images after processing

by slicing this surface perpendicularly to the t-axis.

t t
T Yy

Fig. 11 Generated implicit surface

Using this surface, we calculated the velocities of the flame as shown in Fig. 12. From this result, the flame translates
globally and expands locally. For the flame case, the rotational component is thought to be smaller than other components.
Thus we conclude that this result is valid. The computational time is shown in Table 1. We speeded up solving Eq. 8 by
parallel processing on the GPU.
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Fig. 12 Velocities of a flame

Table 1 Computational time. Computations were performed on a 3.4 GHz Core i7-2600 with 8 MB RAM and
GeForce GTX 560Ti.

Computational time [s]
Generating an implicit surface 0.31
Calculating velocities per frame 0.25

6. Conclusion

In this paper, we have presented a method to calculate a 2D object in consecutive images. We performed calculations
by splitting into the global rigid motional component and the local deformational component. The results of sample
simulations confirmed that our method can be applied to translational motion, rotational motion and scaling deformation
of an object. Using our method, we could calculate valid velocities of a flame in consecutive images.

In future work, we plan to apply our method to deformation other than scaling, taking into account the tangential
component of the deformational velocity. Furthermore, we will extend our method for 3D objects.
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