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Abstract of aesthetic curves the log-aesthetic curve. We use
“log-aesthetic” instead of “aesthetic” to clarify that we

This paper proposes a method of inputting a plarfif d€aling with a specific type of cutve

log-aesthetic curve with compound-rhythm using fo4f,e |o4_aesthetic curve includes the logarithmic

control points. The log-aesthetic curve does not &%quiangular) spirald = 1), the clothoid curved —
hibit any undulations of curvature as its curvature in_-l) the circle involute ¢ — 2), and Nielsen's spiral

creases or decreases monotonically and it is suita%e: 0). Its curvature increases or decreases mono-
for practical product design. We report an method {gnicaly and its evolute is also given by another log-

input the compound-rhythm log-aesthetic curve maggginatic curve. This means that it does not exhibit

up of two log-aesthetic curve segments connected Withy ,nqulations of curvature. It is possible to generate

C® continuity. and deform log-aesthetic curves even if they are ex-
pressed by integral forms using their unit tangent vec-
Jors as integrandsa(+#£ 1, 2), and they are expected
to be used in practical product design, e.g., in the de-
sign of cars. However, their input method proposed
using three control points [YS06] can generate only
a log-aesthetic curve segment and cannot generate a
curve with compound-rhythm. The concept of the
rhythm of the curve was introduced by [Har97] and
Harada et al. proposed “aesthetic curves” as thake compound-rhythm means that the curve consists
whose logarithmic distribution diagram of curvaturef two segments, which are log-aesthetic curves with
(LDDC) can be approximated by a straight lindifferent values ofr.

[Har97, Har97]. Miura derived analytical solutions of

the curves whose logarithmic curvature graph (LCAHMY98] defined the log-aesthetic curve with
an analytical version of the LDDC, is strictly given bygompound-rhythm, or the compound-rhythm log-
a straight line and proposed these solutions as ggﬁsthetic curve that consists of two log-aesthetic curve
eral equations of aesthetic curves [Miu06]. Furthefegments with differentr values; these segments are
more, Yoshida and Saito analyzed the properties of grnnected with continuity of curvature, and the deriva-
curves and developed a new method for the interacti{#¢ Of curvature is continuous between them. The ver-
generation of a curve segment by specifying two efigal axis of the LCG measurdsg(ds/d(logp)) and
points and their tangent vectors with three so-call8@ continuity depends on that df/dp. Since we as-
control points as well as the slopeof the straight line Sume that the LCG of the compound-rhythm curve is
of the LCG [YSO06]. The value off is preserved as acontinuous, the curve should ha@2 continuity. They

parameter that can be changed by the designer of —— | e st coined b Prof. Cal
: . . e term “log-aesthetic” was first coined by Prof. Calro
curve since it was first suggested to be closely rela&%uin at the University of California, Berkeley in discussions at

to the impression of the curve [Har97]. In this PaP&he International CAD Conference and Exhibition 2007 held in
we call the curves expressed by the general equatieagaii.
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1 Introduction
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noted that the compound-rhythm log-aesthetic curve ) :}
and its approximations have been used frequently for ca-1

car body design _at c_ardesign fa_ctories in Europe, SPfiere 6. is a constant (angle) determined by the di-
cially “carrozzeria” in Italy, and it can be regarded 43.ction angle as— 0. We assume that if the curve is

f"‘ \:E_ry important curve for cartﬁtyélrtlg_des[[gn. Henc rning left, its curvature is positive. Then in the com-
N thiS paper we propose a method to INput Compounga, y1ane the poin®(s) on the curve is given by:
rhythm log-aesthetic curves.

There are two typical ways to input a curve: one is s (1 a a-1

specify passing ppoints, and the (fther is to specify colﬁgs) - P0+/0 EXp{I <c a—1 (cs+d) @ + 96> }ds

trol points. Due to the ease of input and good control- 3)
lability, we studied about the input of the curve with

control points. The log-aesthetic curve is generally dgherei = /—1, andPy is the start point of the curve.

fined in an integral form and it is not straightforward

to locate its end at a specific position.

The rest of this paper consists of the following seg-'2 Formula of Compound-rhythm Curve

tions. Section 2 reviews the criteria of the qual- _
ity of a curve and previous research on the logP€ compound-rhythm curve consists of two log-

aesthetic curve. Section 3 defines the formulae &3Sthetic curve segments and for two given values of
the compound-rhythm log-aesthetic curve. SectiorP4the relationship between the radius of curvatpre
presents a method to input a curve using four cof?d the arc lengthis expressed by:

trol points and shows curve examples generated by the .

method. The final section concludes the paperand dis- ~ , _ { (Cos+ 0|o)"j0 (0<s<%) )
cusses future work. (s+dp) (sx<s<9g)

wheres; is the curve length from the start point to the
2 Compound-rhythm Log-aesthetic connection point of the segments aagc andd are
Curve different from the connection point, ardis the total
length of the curve.

The formulae of the log-aesthetic curves are generdgsed on the above formulations, at the parameter
classified into two cases [MSYKO5]: one where 0 range0 < s < s the compound-rhythm log-aesthetic
and another where = 0. The curve is specified ascurveP(s) is given by:

Nielsen’s spiral ifa = 0 and it is somehow excep-

[ = i ithmic spi s (1 a -1
tional. If o = 1, the curve i the logarithmic spiral anq30+/ expl ( 0 (costdo) e + 9e0> ds
it is not necessary to use an integral form to define the Jo Coap—1

curve. Therefore, in this section we assume- 0, 1. (5)
Even if a is equal to0 or 1, we can deal with them
similarly. In the parameter range < s< §,
. s (1 o a1
2.1 Formula of Log-aesthetic Curve PC+/ exp|il — (C1S+0dp) @ 4 B¢ | pds
S C1L 01— 1
In case ofa # 0, the following equation is satisfied (6)

between the radius of curvatupeand the arc length

of the curve: whereP¢ is the connection point, ar§}; is determined

a by c1, di, and the direction angl@. of the curve at the
p” =cs+d (1) connection point because the direction argye) for
wherec andd are constants. The relationship betweéngivensis given by
the arc lengtls and the direction anglé is given by: 1
0

(10771
9c=9(8c)—000{071(005c+d0) 0 +60 (7)




for the first segment and ap anda are specified by the designer and if the direc-
tion angled at the connection point and that of the end

6. =0(x) = 1 o 1 (c18c+d1)%1 + 6, (8) pointare given, the total length of the first segmgnt
il 01— - and that of the whole curvg are determined. Hence,
6=06(s)= o aal 1 (C18 + dl)le +6s (9) if coanddp are determined;; andd; are uniquely de-
1 41—

termined because of the conditions of the continuity
for the second segment. of the radius of curvaturp and its derivativelp /dsat

. . the connection poir®.
To generate points on the curve, the equations (5) and

(6) must be integrated numerically. Yoshida and Saito
used an adaptive Gaussian quadrature method ancbga&- Appropriate ranges ofco and do
tained the maximum relative error tfx 10719 to the
curve length for a log-aesthetic curve within severelm

milliseconds on a standard PC[YS06]. We use an. m the above discus_sion_s, for givgn start and end
adaptive quadrature method using Simpson’s rulepomts and the tangent directions specified by four con-

i . . t?oﬁ oints a compound-rhythm curve is uniquely de-
described in subsection 3.4. P . P . quety
termined ifcy anddp are determined appropriately. It
is necessary to searchanddy numerically and by us-
2.3 Connection Conditions ing, for example, Newton’s method with derivatives or
the downhill simplex method without derivatives (e.qg.,

The two segments are connected at the connectiBfVFO7]). These values are searched to make the end
point with the continuity of 1) the position, 2) thgPoint of the curve equal to the fourth control points.
tangent vector, 3) the radius of curvature, and 4) thidte that forco anddo, and alsac; andd; determined
derivative of the radius of curvature. Note that the coRY these two values, the radius of curvature must be
tinuity of the radius of curvature and the derivative ¢valuated as a positive real number in Eq.(4). There-
the radius of curvature are equivalent to that of cur@re, the following inequality equations must be held:
ture and its derivative, respectively, because they are

reciprocals of their counterparts. The continuity of the CS+do>0 (0<s<s) (15)
position and the tangent vector is easily guaranteed by cs+di >0 (sx<s<g) (16)
specifying suitable values fé; and 8, respectively.

The conditions of continuity of the radius of curvatur@lthough the length of the first curve segmegtand

at the connection point are given by: the total length of the curvg are determined byy,
. ) do, and the direction angles at the start, end, and con-
Pc = (CoSc +dp) % = (C1&+d1) % (10) nection points according to Eq.(2), these values must

be positive and appropriately ordered, i(eg 5. < §.
wherep, is the radius of curvature at the connection

point. By differentiatingp® = cos + do and p2t = If one of these constraints is violated, the objective
Clstrdl W|th respect to the arc |engmthe fo”owing fUnCtion Of the dOth”I SimpleX methOd returns a
equations are obtained: predefined maximum value or, for example, the dis-
tance between the start and end points and naturally
aopao—l% — o (11) the points of the simplex will go away from the viola-
¢ ddS tion point.
_10pPc
apdt == =c 12
1pC dS 1 ( )

As the derivative of the radius of curvatulg./dsis 3 Input of Curve
the same for the above two equatioosis given by:

CL= ﬂ%pgl—ao (13) In this section, we describe how to generate a
0o compound-rhythm log-aesthetic curve from four con-
From Eq.(10)d; is given by: trol points. The designer of the curve inputs two

values for the first and second curve segments as well
di =pt — a1 (14) as the locations of these control points. Thealues



can be changed by the designer because they are slayever, the log-aesthetic curve segment cannot al-
gested to be related to the impressions of the curvewas/s be generated from three arbitrarily positioned
mentioned in Section 1. control points, especially when the absolute value of
a is large because the curve segment becomes simi-
lar to an arc, as noted previously [YS06]. They also
3.1 Input of Control Points discussed the existence of the solution of the single
log-aesthetic curve in detail.
First, input four control points fron®Py to P3. By us-
ing these points, similar to the cubi@&Bier curve, the
start pointPg, the end poinPs, the direction angléy

Our algorithm controls the direction at the connection
point. Hence the positions of the three control points
of each segment are determined and the existence

at Pg and the direction anglé, at P3; are specified. -
Furthermore, specify the direction angieat the con- of the solution for each segment of the compound-
’ rhythm log-aesthetic curve is equivalent to that dis-

nection point by conforming it to the direction angle .
from Py to P,. Note that if we ignore rigid motion,Cussed by them. Please refer to their paper for the

the number of parameters of a compound-rhythm | complete picture of the log-aesthetic curve segment.

. . . he compound-rhythm log-aesthetic curve consists of

aesthetic curve is essentially foas-do, S, ands— ) .
) . . the two log-aesthetic curve segments and its drawable
and that of the constraints given is also four-the posi-___. ; .
. . . .~ _ _configuration of the four control points depends on
tion of the end point (2 constraints) and the directi H .
) , . se of the log-aesthetic curve segments of the two
angles at the connection and end points (2 constraints).” ...

. I . Specifieda values.
Even if we change the positions Bf andP,, we will

obtain the same curve unless the direction flento Figure 1 illustrates the drawable regions of a set of
P, is changed. the four control points. The three control points at

For the compound-rhythm curve, its curvature is irg(—)’o)’ (02,0.3), and (1,0) are fixed and the third
P y ! control point whose initial position i$0.5,0.5) are

creasing or decreasing monotonically and it does r}chct)ved. Each black dot indicates the position of the

have any inflection points. Hence, the polygonal ling. )
made of the four control points should be specifiedr{aﬁsIrOI control point where a compound-rhythm log-

: . . . . aesthetic curve is drawable. Figure 1(a) and (b) show
always turning right or left without zigzagging. As : , .

. . . .. drawable regions for the curves whass are given by
the positive curvature is assumed to be obtained if t

e
curve is turning left, in case of the right-turning curv

0o, 01) = (—0.1,0.1) and(—2,2), respectively. Since
for example, we create the mirror image of the contr

f]e curve cannot have an inflection point except for

: ) '%e start point or the end point, the region where the
points along the line throughy andP; and generate
a curve. Then, we generate the mirror image of t

ﬁgquence of the control points becomes zigzagged is
o S undrawable. Generally, as illustrated in [YSO06] if the

curve as the actual curve specified by the original c

trol points.

on- , ,
aﬂ)solute values afi’s are larger, the drawable region
becomes narrower.

3.2 Specification ofag, a 3.3 Search ofco, do

Itis necessary for the designer to specify woalues The parameters to determine a compound-rhythm log-

for the first and second curve segments. If necessaré( : i
) . . aesthetic curve are only twap anddy. s ands are
we change the direction of the curve to make its curv.

. . (%atermmed by the constraints (directions of the tan-
ture increase monotonically, and then the compound- . .
) e ent vectors at the connection and end points) from
rhythm curve is classified into two types: a cur

whosea changes from positive to negative, and anJ® (7). (8), and (9) i€o anddo are given.

other from negative to positive. The former is callethe values oty anddy must be searched numerically.
the mountain-type and the latter is the valley-typk our implementation, we adopt the downhill simplex
Harada et al. noted that valley-type curves were usedthod because it does not require the derivatives of
for several European cars [HMY98]. Generally the déhie objective function with respect to the parameters.
signer can specify freely positive or negative values fohe objective function is the square of the distance be-
0o andas as required. tween the fourth control point and the end point of the



is of valley type. This graph shows that: 1) for each
segment of the curve its LCG is given by a straight
line segment, i.e., it is a log-aesthetic curve, and 2)
as the LCG is continuous, both the derivative of the
curvature and the curvature itself are continuous, or

05 C2 continuity is guaranteed for the whole curve.
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Figure 1. Drawable regions for a given set of the s | S
four control points. The three control points ata cure (b) Radius of curvature  (¢) Logarithmis eurvature graph
(0,0), (0.2,0.3), and (1,0) are fixed and the third

control point whose initial position i$0.5,0.5) are Figure 2: Valley-type compound-rhythm log-aesthetic
moved. Each black dot indicates the position of th@irve example. (a) Curve with its control points. (b)
third control point where a compound-rhythm logsraph of arc length v.s. radius of curvature. (c) Loga-
aesthetic curve is drawable. (a) Drawable regi@ithmic curvature graph. The red and green lines cor-
for (ap,a1) = (—0.1,0.1). (b) Drawable region for respond to the first and second segments, respectively.
(ao, (11) = (—2, 2).

28 3 32 34 36

Figure 3 shows several examples of the valley-
curve calculated using the currey and dy values. and mountain-type compound-rhythm log-aesthetic
The derivatives with respect g anddp are given by curves. ag and a; are thea values of the first and
integral forms. Furthermore, & ands depend on second segments, respectively. The two types of curve
these values, the derivatives are given by very complre compared in Fig.3(a). Interestingly, the shape of
expressions. This makes Newton’s method slow. the valley- and mountain-type curves are similar if we
switch theira values from(ag, 1) to (a1, 0p) even

?j;?:dl?g?: %ﬂufjvzﬁ;arzn\?a?gézvztgﬁz ;T;rsteaﬁgl'tngugh their LCGs are quite different. Further inves-
. . . . : etlgations, regarding the differences between these two
points of the cubic Bzier curve defined by the glveq

. ypes are necessary. However, but in this paper, we
four control points. .
adopted the valley-type curves for car design exam-
ples as described in the next section according to the
suggestion of [HMY98]. Figure 3(b) shows several
examples of valley-type curves. Their shape can vary

depending on ther values, and generally if the abso-

Figure 2(a) shows an example of the valley-type Ioﬂfte values of botlog anda; become larger, the curve

aesthetic curve with compound-rhythm. The curve, . :
i . . . IS “compressed” because the first and second segments
shown in red is the first segment and that in green is .. .
: have smaller and larger radii of curvature, respectively.
the second segment. The four control points and their

connecting lines are shown in blue. Figure 3(c) shows several examples of the monotonic-

Figure 2(b) shows the graph of the radius of curvfahythm log-aesthetic curve for comparison Wlth those
: of compound-rhythm. Note that we cannot simultane-

ture with respect to the arc length. The red and greg}nSI specify tanaent directions at two end points b

lines in these graphs (b) as well as (c) correspond > SP ify tang rect W pol y

the first and second segments, respectively. Graphtﬁ)rge control points, and this greatly restricts the appli-

indicates that the radius of curvature is continuous bﬁa_ lity of the single log-aesthetic curve segment. Fur-
I

3.4 Curve examples

tween the two segments and itincreases monotonicr;[l ge/rmore, the_ amount of change in th? dlrc_actlon angle
or'the curve input by three control points is theoreti-

cally limited within 180 °*and is at most abotit50 °to

We specifiedag = —1.5, a1 = 0.5 and the slope of obtain a curve usable for practical design. However,

its logarithmic curvature graph changes from negatiwéth four control points, it is possible to input a curve

to positive as shown in Fig. 2(c). Hence, the cuntbe angular change of the direction of which is more

and smoothly.
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continuity levels G? and G® continuity) as well as a
space curve of log-aesthetic type. We are now extend-
ing the log-aesthetic concept into the formulation of a
surface. We will develop a styling CAD system for car
design transferring the log-aesthetic curve data from

(a) Valley- and mountain-type curves specified by four control points

(-0.25,0.25)

(-10,0.5)—>
(-0.5,0.5—
(-0.5,10)—

(¢a)=(-0.5,0.5)— (-5,5)—
(-5,5) — (-10,10)—
(-10,10)—

(b) Valley-type curves specified by four control points

(c) Single log-aesthetic curve segments specified by three control points

Figure 3: Valley- and mountain-type curves generatBgiu06]

by specifying four control points and curves by three
control points.

than180 “as shown on the right of Fig.3(b).

The processing time spent on the searclagadind dy

in Eqg.(5) by the downhill simplex method performed
on a PC with a 2.53 GHz Pentium 4 CPU takes about
0.1~20 ms if a solution exists. We used an adaptive
guadrature method using Simpson’s rule for numerical

integration. We suppressed the maximum error und@l VFO7]

some epsilon (we used 1.0e-9) multiplied by the curve
length. Although numerical integration is necessary to
generate a curve, the designer can deform the curve

interactively by changing the positions of its contr?l(SOG]

points.

4 Conclusions and Future Work

In this paper, we proposed a method to input a
compound-rhythm log-aesthetic curve consisting of
two log-aesthetic curve segments using four control
points. Using this method, we can generate a curve
for a values specified by the designer the logarithmic
curvature graph of which is given by a two-segmented
polyline.

In future studies, we will examine how to input a curve
made up of more than two segments with appropriate

[Har97]

[HMY98]

[MSYKO5]

the initial design to the manufacturing stage.
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