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Abstract

This paper proposes a method of inputting a planar
log-aesthetic curve with compound-rhythm using four
control points. The log-aesthetic curve does not ex-
hibit any undulations of curvature as its curvature in-
creases or decreases monotonically and it is suitable
for practical product design. We report an method to
input the compound-rhythm log-aesthetic curve made
up of two log-aesthetic curve segments connected with
C3 continuity.

Keywords: log-aesthetic curve, compound-rhythm
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1 Introduction

Harada et al. proposed “aesthetic curves” as those
whose logarithmic distribution diagram of curvature
(LDDC) can be approximated by a straight line
[Har97, Har97]. Miura derived analytical solutions of
the curves whose logarithmic curvature graph (LCG),
an analytical version of the LDDC, is strictly given by
a straight line and proposed these solutions as gen-
eral equations of aesthetic curves [Miu06]. Further-
more, Yoshida and Saito analyzed the properties of the
curves and developed a new method for the interactive
generation of a curve segment by specifying two end
points and their tangent vectors with three so-called
control points as well as the slopeα of the straight line
of the LCG [YS06]. The value ofα is preserved as a
parameter that can be changed by the designer of the
curve since it was first suggested to be closely related
to the impression of the curve [Har97]. In this paper,
we call the curves expressed by the general equations

of aesthetic curves the log-aesthetic curve. We use
“log-aesthetic” instead of “aesthetic” to clarify that we
are dealing with a specific type of curve1.

The log-aesthetic curve includes the logarithmic
(equiangular) spiral (α = 1), the clothoid curve (α =
−1), the circle involute (α = 2), and Nielsen’s spiral
(α = 0). Its curvature increases or decreases mono-
tonically and its evolute is also given by another log-
aesthetic curve. This means that it does not exhibit
any undulations of curvature. It is possible to generate
and deform log-aesthetic curves even if they are ex-
pressed by integral forms using their unit tangent vec-
tors as integrands (α 6= 1, 2), and they are expected
to be used in practical product design, e.g., in the de-
sign of cars. However, their input method proposed
using three control points [YS06] can generate only
a log-aesthetic curve segment and cannot generate a
curve with compound-rhythm. The concept of the
rhythm of the curve was introduced by [Har97] and
the compound-rhythm means that the curve consists
of two segments, which are log-aesthetic curves with
different values ofα.

[HMY98] defined the log-aesthetic curve with
compound-rhythm, or the compound-rhythm log-
aesthetic curve that consists of two log-aesthetic curve
segments with differentα values; these segments are
connected with continuity of curvature, and the deriva-
tive of curvature is continuous between them. The ver-
tical axis of the LCG measureslog(ds/d(logρ)) and
its continuity depends on that ofds/dρ . Since we as-
sume that the LCG of the compound-rhythm curve is
continuous, the curve should haveC3 continuity. They

1The term “log-aesthetic” was first coined by Prof. Calro
Séquin at the University of California, Berkeley in discussions at
the International CAD Conference and Exhibition 2007 held in
Hawaii.



noted that the compound-rhythm log-aesthetic curve
and its approximations have been used frequently for
car body design at car design factories in Europe, espe-
cially “carrozzeria” in Italy, and it can be regarded as
a very important curve for car styling design. Hence,
in this paper we propose a method to input compound-
rhythm log-aesthetic curves.

There are two typical ways to input a curve: one is to
specify passing points, and the other is to specify con-
trol points. Due to the ease of input and good control-
lability, we studied about the input of the curve with
control points. The log-aesthetic curve is generally de-
fined in an integral form and it is not straightforward
to locate its end at a specific position.

The rest of this paper consists of the following sec-
tions. Section 2 reviews the criteria of the qual-
ity of a curve and previous research on the log-
aesthetic curve. Section 3 defines the formulae of
the compound-rhythm log-aesthetic curve. Section 4
presents a method to input a curve using four con-
trol points and shows curve examples generated by the
method. The final section concludes the paper and dis-
cusses future work.

2 Compound-rhythm Log-aesthetic
Curve

The formulae of the log-aesthetic curves are generally
classified into two cases [MSYK05]: one whereα 6= 0
and another whereα = 0. The curve is specified as
Nielsen’s spiral ifα = 0 and it is somehow excep-
tional. If α = 1, the curve is the logarithmic spiral and
it is not necessary to use an integral form to define the
curve. Therefore, in this section we assumeα 6= 0, 1.
Even if α is equal to0 or 1, we can deal with them
similarly.

2.1 Formula of Log-aesthetic Curve

In case ofα 6= 0, the following equation is satisfied
between the radius of curvatureρ and the arc lengths
of the curve:

ρα = cs+d (1)

wherec andd are constants. The relationship between
the arc lengthsand the direction angleθ is given by:

θ =
1
c

α
α−1

(cs+d)
α−1

α +θe (2)

whereθe is a constant (angle) determined by the di-
rection angle ats= 0. We assume that if the curve is
turning left, its curvature is positive. Then in the com-
plex plane the pointP(s) on the curve is given by:

P(s) = P0 +
∫ s

0
exp

{
i

(
1
c

α
α−1

(cs+d)
α−1

α +θe

)}
ds

(3)

wherei =
√−1, andP0 is the start point of the curve.

2.2 Formula of Compound-rhythm Curve

The compound-rhythm curve consists of two log-
aesthetic curve segments and for two given values of
α the relationship between the radius of curvatureρ
and the arc lengths is expressed by:

ρ =

{
(c0s+d0)

1
α0 (0≤ s≤ sc)

(c1s+d1)
1

α1 (sc < s≤ sl )
(4)

wheresc is the curve length from the start point to the
connection point of the segments andα, c andd are
different from the connection point, andsl is the total
length of the curve.

Based on the above formulations, at the parameter
range0≤ s≤ sc the compound-rhythm log-aesthetic
curveP(s) is given by:

P0 +
∫ s

0
exp

{
i

(
1
c0
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α0 +θe0

)}
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(5)

In the parameter rangesc < s≤ sl ,

Pc +
∫ s
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exp

{
i

(
1
c1
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α1−1
α1 +θe1

)}
ds

(6)

wherePc is the connection point, andθe1 is determined
by c1, d1, and the direction angleθc of the curve at the
connection point because the direction angleθ(s) for
a givens is given by

θc = θ(sc) =
1
c0

α0

α0−1
(c0sc +d0)

α0−1
α0 +θe0 (7)



for the first segment and

θc = θ(sc) =
1
c1

α1

α1−1
(c1sc +d1)

α1−1
α1 +θe1 (8)

θl = θ(sl ) =
1
c1

α1

α1−1
(c1sl +d1)

α1−1
α1 +θe1 (9)

for the second segment.

To generate points on the curve, the equations (5) and
(6) must be integrated numerically. Yoshida and Saito
used an adaptive Gaussian quadrature method and at-
tained the maximum relative error of1×10−10 to the
curve length for a log-aesthetic curve within several
milliseconds on a standard PC[YS06]. We use an
adaptive quadrature method using Simpson’s rule as
described in subsection 3.4.

2.3 Connection Conditions

The two segments are connected at the connection
point with the continuity of 1) the position, 2) the
tangent vector, 3) the radius of curvature, and 4) the
derivative of the radius of curvature. Note that the con-
tinuity of the radius of curvature and the derivative of
the radius of curvature are equivalent to that of curva-
ture and its derivative, respectively, because they are
reciprocals of their counterparts. The continuity of the
position and the tangent vector is easily guaranteed by
specifying suitable values forPc andθe1, respectively.
The conditions of continuity of the radius of curvature
at the connection point are given by:

ρc = (c0sc +d0)
1

α0 = (c1sc +d1)
1

α1 (10)

whereρc is the radius of curvature at the connection
point. By differentiatingρα0

c = c0sc + d0 andρα1
c =

c1sc+d1 with respect to the arc lengths, the following
equations are obtained:

α0ρα0−1
c

dρc

ds
= c0 (11)

α1ρα1−1
c

dρc

ds
= c1 (12)

As the derivative of the radius of curvaturedρc/ds is
the same for the above two equations,c1 is given by:

c1 =
α1

α0
c0ρα1−α0

c (13)

From Eq.(10),d1 is given by:

d1 = ρα1
c −c1sc (14)

α0 andα1 are specified by the designer and if the direc-
tion angleθ at the connection point and that of the end
point are given, the total length of the first segmentsc

and that of the whole curvesl are determined. Hence,
if c0 andd0 are determined,c1 andd1 are uniquely de-
termined because of the conditions of the continuity
of the radius of curvatureρ and its derivativedρ/dsat
the connection pointPc.

2.4 Appropriate ranges ofc0 and d0

From the above discussions, for given start and end
points and the tangent directions specified by four con-
trol points a compound-rhythm curve is uniquely de-
termined ifc0 andd0 are determined appropriately. It
is necessary to searchc0 andd0 numerically and by us-
ing, for example, Newton’s method with derivatives or
the downhill simplex method without derivatives (e.g.,
[PTVF07]). These values are searched to make the end
point of the curve equal to the fourth control points.
Note that forc0 andd0, and alsoc1 andd1 determined
by these two values, the radius of curvature must be
evaluated as a positive real number in Eq.(4). There-
fore, the following inequality equations must be held:

c0s+d0 > 0 (0≤ s≤ sc) (15)

c1s+d1 > 0 (sc < s≤ sl ) (16)

Although the length of the first curve segmentsc and
the total length of the curvesl are determined byc0,
d0, and the direction angles at the start, end, and con-
nection points according to Eq.(2), these values must
be positive and appropriately ordered, i.e.,0 < sc < sl .

If one of these constraints is violated, the objective
function of the downhill simplex method returns a
predefined maximum value or, for example, the dis-
tance between the start and end points and naturally
the points of the simplex will go away from the viola-
tion point.

3 Input of Curve

In this section, we describe how to generate a
compound-rhythm log-aesthetic curve from four con-
trol points. The designer of the curve inputs twoα
values for the first and second curve segments as well
as the locations of these control points. Theα values



can be changed by the designer because they are sug-
gested to be related to the impressions of the curve, as
mentioned in Section 1.

3.1 Input of Control Points

First, input four control points fromP0 to P3. By us-
ing these points, similar to the cubic Bézier curve, the
start pointP0, the end pointP3, the direction angleθ0

at P0 and the direction angleθ1 at P3 are specified.
Furthermore, specify the direction angleθc at the con-
nection point by conforming it to the direction angle
from P1 to P2. Note that if we ignore rigid motion,
the number of parameters of a compound-rhythm log-
aesthetic curve is essentially four–c0, d0, sc, andsl –
and that of the constraints given is also four–the posi-
tion of the end point (2 constraints) and the direction
angles at the connection and end points (2 constraints).
Even if we change the positions ofP1 andP2, we will
obtain the same curve unless the direction fromP1 to
P2 is changed.

For the compound-rhythm curve, its curvature is in-
creasing or decreasing monotonically and it does not
have any inflection points. Hence, the polygonal line
made of the four control points should be specified as
always turning right or left without zigzagging. As
the positive curvature is assumed to be obtained if the
curve is turning left, in case of the right-turning curve,
for example, we create the mirror image of the control
points along the line throughP0 andP1 and generate
a curve. Then, we generate the mirror image of the
curve as the actual curve specified by the original con-
trol points.

3.2 Specification ofα0, α1

It is necessary for the designer to specify twoα values
for the first and second curve segments. If necessary,
we change the direction of the curve to make its curva-
ture increase monotonically, and then the compound-
rhythm curve is classified into two types: a curve
whoseα changes from positive to negative, and an-
other from negative to positive. The former is called
the mountain-type and the latter is the valley-type.
Harada et al. noted that valley-type curves were used
for several European cars [HMY98]. Generally the de-
signer can specify freely positive or negative values for
α0 andα1 as required.

However, the log-aesthetic curve segment cannot al-
ways be generated from three arbitrarily positioned
control points, especially when the absolute value of
α is large because the curve segment becomes simi-
lar to an arc, as noted previously [YS06]. They also
discussed the existence of the solution of the single
log-aesthetic curve in detail.

Our algorithm controls the direction at the connection
point. Hence the positions of the three control points
of each segment are determined and the existence
of the solution for each segment of the compound-
rhythm log-aesthetic curve is equivalent to that dis-
cussed by them. Please refer to their paper for the
complete picture of the log-aesthetic curve segment.
The compound-rhythm log-aesthetic curve consists of
the two log-aesthetic curve segments and its drawable
configuration of the four control points depends on
those of the log-aesthetic curve segments of the two
specifiedα values.

Figure 1 illustrates the drawable regions of a set of
the four control points. The three control points at
(0,0), (0.2,0.3), and (1,0) are fixed and the third
control point whose initial position is(0.5,0.5) are
moved. Each black dot indicates the position of the
third control point where a compound-rhythm log-
aesthetic curve is drawable. Figure 1(a) and (b) show
drawable regions for the curves whoseα ’s are given by
(α0,α1) = (−0.1,0.1) and(−2,2), respectively. Since
the curve cannot have an inflection point except for
the start point or the end point, the region where the
sequence of the control points becomes zigzagged is
undrawable. Generally, as illustrated in [YS06] if the
absolute values ofα ’s are larger, the drawable region
becomes narrower.

3.3 Search ofc0, d0

The parameters to determine a compound-rhythm log-
aesthetic curve are only two:c0 andd0. sc andsl are
determined by the constraints (directions of the tan-
gent vectors at the connection and end points) from
Eqs (7), (8), and (9) ifc0 andd0 are given.

The values ofc0 andd0 must be searched numerically.
In our implementation, we adopt the downhill simplex
method because it does not require the derivatives of
the objective function with respect to the parameters.
The objective function is the square of the distance be-
tween the fourth control point and the end point of the
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Figure 1: Drawable regions for a given set of the
four control points. The three control points at
(0,0), (0.2,0.3), and (1,0) are fixed and the third
control point whose initial position is(0.5,0.5) are
moved. Each black dot indicates the position of the
third control point where a compound-rhythm log-
aesthetic curve is drawable. (a) Drawable region
for (α0,α1) = (−0.1,0.1). (b) Drawable region for
(α0,α1) = (−2,2).

curve calculated using the currentc0 and d0 values.
The derivatives with respect toc0 andd0 are given by
integral forms. Furthermore, assc andsl depend on
these values, the derivatives are given by very complex
expressions. This makes Newton’s method slow.

As the initial values ofc0 and d0, we use those cal-
culated from the curvature values at the start and end
points of the cubic B́ezier curve defined by the given
four control points.

3.4 Curve examples

Figure 2(a) shows an example of the valley-type log-
aesthetic curve with compound-rhythm. The curve
shown in red is the first segment and that in green is
the second segment. The four control points and their
connecting lines are shown in blue.

Figure 2(b) shows the graph of the radius of curva-
ture with respect to the arc length. The red and green
lines in these graphs (b) as well as (c) correspond to
the first and second segments, respectively. Graph (b)
indicates that the radius of curvature is continuous be-
tween the two segments and it increases monotonically
and smoothly.

We specifiedα0 = −1.5, α1 = 0.5 and the slope of
its logarithmic curvature graph changes from negative
to positive as shown in Fig. 2(c). Hence, the curve

is of valley type. This graph shows that: 1) for each
segment of the curve its LCG is given by a straight
line segment, i.e., it is a log-aesthetic curve, and 2)
as the LCG is continuous, both the derivative of the
curvature and the curvature itself are continuous, or
C3 continuity is guaranteed for the whole curve.
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Figure 2: Valley-type compound-rhythm log-aesthetic
curve example. (a) Curve with its control points. (b)
Graph of arc length v.s. radius of curvature. (c) Loga-
rithmic curvature graph. The red and green lines cor-
respond to the first and second segments, respectively.

Figure 3 shows several examples of the valley-
and mountain-type compound-rhythm log-aesthetic
curves. α0 and α1 are theα values of the first and
second segments, respectively. The two types of curve
are compared in Fig.3(a). Interestingly, the shape of
the valley- and mountain-type curves are similar if we
switch theirα values from(α0,α1) to (α1,α0) even
though their LCGs are quite different. Further inves-
tigations regarding the differences between these two
types are necessary. However, but in this paper, we
adopted the valley-type curves for car design exam-
ples as described in the next section according to the
suggestion of [HMY98]. Figure 3(b) shows several
examples of valley-type curves. Their shape can vary
depending on theα values, and generally if the abso-
lute values of bothα0 andα1 become larger, the curve
is “compressed” because the first and second segments
have smaller and larger radii of curvature, respectively.

Figure 3(c) shows several examples of the monotonic-
rhythm log-aesthetic curve for comparison with those
of compound-rhythm. Note that we cannot simultane-
ously specify tangent directions at two end points by
three control points, and this greatly restricts the appli-
cability of the single log-aesthetic curve segment. Fur-
thermore, the amount of change in the direction angle
of the curve input by three control points is theoreti-
cally limited within 180 ˚and is at most about150 ˚to
obtain a curve usable for practical design. However,
with four control points, it is possible to input a curve
the angular change of the direction of which is more
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Figure 3: Valley- and mountain-type curves generated
by specifying four control points and curves by three
control points.

than180 ˚as shown on the right of Fig.3(b).

The processing time spent on the search ofc0 andd0

in Eq.(5) by the downhill simplex method performed
on a PC with a 2.53 GHz Pentium 4 CPU takes about
0.1∼20 ms if a solution exists. We used an adaptive
quadrature method using Simpson’s rule for numerical
integration. We suppressed the maximum error under
some epsilon (we used 1.0e-9) multiplied by the curve
length. Although numerical integration is necessary to
generate a curve, the designer can deform the curve
interactively by changing the positions of its control
points.

4 Conclusions and Future Work

In this paper, we proposed a method to input a
compound-rhythm log-aesthetic curve consisting of
two log-aesthetic curve segments using four control
points. Using this method, we can generate a curve
for α values specified by the designer the logarithmic
curvature graph of which is given by a two-segmented
polyline.

In future studies, we will examine how to input a curve
made up of more than two segments with appropriate

continuity levels (G2 andG3 continuity) as well as a
space curve of log-aesthetic type. We are now extend-
ing the log-aesthetic concept into the formulation of a
surface. We will develop a styling CAD system for car
design transferring the log-aesthetic curve data from
the initial design to the manufacturing stage.
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