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Abstract

Recently researches on techniques to use simulations
based on the physical laws for CG animations are be-
coming popular and popular. Although paper exists
ubiquitously around us in daily life, it is not straight-
forward to express its folding lines, fractures, and tex-
tures and not much effort has been made on researches
of paper for CG. Hence the purpose of this paper is to
simulate paper fracture based on the physical laws and
use the results for CG animations as the first step to
the CG-oriented paper simulation.

The fracture simulation of paper is performed at first
by modeling a piece of paper with triangular meshes
and applying the FEM to calculate their stresses and
strains. Then we determine the starting position of the
fracture and the direction of the crack and rebuild the
structure of the meshes to express the fracture cross
sections. Furthermore for the cross section originally
expressed by piece-wise linear segments, by use of the
turbulence function we generate natural-looking geo-
metrically complicated cross sections as textures and
map them to the meshes to represent the paper char-
acteristics that become clear when the piece of paper is
torn apart. The geometry of the fracture cross sections
remains similar even though the mesh size is changed
because of the noise-mixed texture mapping, that al-
lows us to use relatively coarse meshes and simulate
the paper fracture in almost real time.
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1 Introduction

The physical laws are used to simulate natural phenom-
ena to produce CG animations in a lot of researches.
For example, the behaviors of water flows, flame and
human clothes have been realistically reproduced as
CG animations and they have been used for movies
and games. Although paper exists ubiquitously around
us in daily life as water and clothes, not much effort
has been made on researches of paper for CG. The
cloth simulation is one of the researches on two dimen-
sional objects like paper and it has been well studied.

However, it is not straightforward to express its fold-
ing lines, fractures, and textures. Hence the purpose
of this paper is to simulate paper fracture based on the
physical laws and use the results for CG animations as
the first step to the CG-oriented paper simulation.

2 Simulation Outline

Figure 1(a) shows the algorithm of the paper simu-
lation in this research. At first, a piece of paper is
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Figure 1: Simulation outline

modeled by a triangular mesh and the Finite Element
Method (FEM) is applied to the model. The stiffness
equation is used as a motion equation and the stresses
and displacements of the nodes of the model are calcu-
lated. Next, the fracture algorithm determines a frac-
ture position and direction by use of the node stresses
and displacements obtained by the FEM. Then the
mesh is reconstructed to appropriately express a clack
generated by the fracture. Finally, the paper texture is
represented by mapping a suitable image to the model.
The processes from the clack generation to the texture
mapping are grouped as one step and the fracture is
simulated by applying this step repeatedly.

In this paper, all simulation results are performed
under the same conditions as shown in Fig.1(b). We
apply two forces of the same magnitude in the oppo-
site directions at the nodes illustrated as rectangular
marks, fix the two nodes displayed by circular marks
and make other nodes free.



3 FEM Principle

Each process mentioned in the previous section is ex-
plained in detail.

FEM

A piece of paper is modeled by a triangular meshe with
nodes and triangular elements as shown in Fig.2. The
FEM is used to calculate the node stresses and dis-
placements in this research.
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Figure 2: Paper model
3.1.1 Motion equation

The motion equation used for the FEM is a stiffness
equation given by

{F} = [K]{u} (1)

where F is loads, K is spring constants, and u is dis-
placements. One side of each triangular element of
the model is regarded as a truss element. The spring
constant of each truss element is determined by the
following equation:

F=—" 2)

where F is its Young’s modulas, A is its cross-section
area, and [ is the distance of its two nodes. At first,
the stiffness matrix of the truss element for each side
of the triangle is obtained and the stiffness matrix of
the triangular element is calculated. The total stiff-
ness matrix of the whole mesh is constructed by su-
perpositioning the stiffness matrix of each triangular
element. Using the whole stiffness matrix and the load-
displacement vector, the stress of each node is calcu-
lated. Then the displacement of each node is deter-
mined. The piece of paper is deformed by repositioning
the node position according to the calculated displace-
ments.

3.2 Fracture growth

The FEM can calculate the node displacements and
the stresses of the elements, but the piece of paper
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Figure 3: Truss element

is only deformed elastically and not broken. Hence
it is necessary to determine the breaking position and
direction of the paper based on the stresses obtained
by the FEM

3.2.1 Fracture type

It is possible to consider two types of the fracture for
the simulation. One is the fractures started from edge
elements and the other is those started from nodes.

In case of the fractures started from edge elements,
along the straight line shown in Fig.4(a) as a dashed
line determined by the stress distribution, a clack
should be generated through the center of gravity of
the triangular element as shown in Fig.4(b). It causes
a problem how to grow the clack in the next step. An-
other problem is that it generates nodes and triangular
elements more than the fractures started from nodes.
Therefore we adopt the fractures started from nodes
because of the low cost of processing time and the ease
of the implementation of the mesh reconstruction.
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Figure 4: Fracture started from an edge

The FEM calculates the stresses applied to the trian-
gular elements. Hence it is necessary to transform the
stresses of the triangular elements to the node stresses
to obtain the stresses applied to the nodes. We ap-
ply the method proposed by O’Brien et al. for 3D
objects[2] to our 2D problem to calculate the node
stresses.

3.2.2 Stress decomposition

The stress applied to a triangular element is decom-
posed to tension and compression components. The
tension component ¢t and the compression component
o~ of the element stress are given by

ot = Z;maX(O,vi(U))m(ﬁi(U)) (3)

0" = Zmin(O,vi(U))m(ﬁi(U)) (4)



respectuvely where v? (o) is the i-th eigenvalue of o and
n'(o) is its eigenvector. m(a) is a 3 x 3 symmetrical
matrix whose eigenvalues are given by |a| where a €

3.
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The above equation decomposes the element stress to
each components.

a#0
a=0

3.2.3 Tensile and compressive forces at the
nodes

We calculate the tensile and compressive forces at the
nodes enforced by the triangular elements. The tensile
force is calculated by

3 2 2
S
£ = =5 2P 2. 2 Babuof
j=1 k=11=1

where s is the area of the element and £ is obtained
by the following equation from the world coordinates
of the nodes pp;j shared by the triangular element:

(6)
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8= { P£1] P[lz] P[13] } (7)

Similarly f;; is calculated for the compressive compo-
nent. Both of the tensile and compressive components
can be determined.

3.2.4 Separation tensor

The separation tensor is calculated to determine the
direction of the fracture. The separation tensor ( is
obtained from the tensile and compressive stresses act-
ing on each node

<=§(—m(f+)+ S mie)
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(8)

If the maximum positive eigenvalue of ¢ of a node
is larger than a certain threshold 7, the material is
broken at the node. In case that more than one eigen-
values exceed 7, the material is broken at the node
whose eigenvalue is the largest among them. The di-
rection of the fracture in the world coordinate system is
perpendicular to the eigenvector corresponding to the
eigenvalue. The lengthes and directions of the arrows
in Fig.5 indicate the magnitudes of the eigenvalues and
the directions of the eigenvectors. [

In Fig.5 the left and right loads are of the same
strength in the opposite directions, but the fracture
distribution is not bilaterally-symmetric. The cause of
this asymmetry is considered to be the asymmetry of
the model itself and related to the way of the mesh
subdivision.
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Figure 5: Eigenvalue and eigenvector

3.3 Mesh reconstruction

In the previous subsetion, we can determine the node
where the fracture starts and the direction in which
the fracture grows. The mesh is reconstructed to gen-
erate a clack at the node slanted in the breaking direc-
tion. The fracture direction does not always conform
to the direction of one of the edges of the mesh and it
is usually necessary to reconstruct the mesh along the
fracture direction.

3.3.1 Reconstruction method

The reconstruction is performed by duplicating the
breaking node, generating a new node at the inter-
section of the line lying in the fracture direction and
the boundary of the triangular element, and connect-
ing the new node with the node generated from the
broken node (circled points in Fig.6(b)).

3.3.2 Important reminder

For the mesh reconstruction, if the node is located on
one of the sides of the triangular element, the adjacent
element becomes rectangular and it is not possible to
model it with triangular elements (see Fig.6(a)). Hence
to avoid such situations, the triangular element adja-
cent to the broken element is remeshed.

(a) Situation to be avoided  (b) Reconstruction

Figure 6: Reconstruction in the first step

Although the reconstruction process so far is good
enough for the first step of the fracture growth, the
number of the elements to be reconstructed for the
second and later steps increases. Although in the first
step, the reconstruction is good enough to rebuild the
triangular elements only directly related to the frac-
ture as shown in Fig.6(b). In the second or later steps,
it is necessary to reconstruct the non-broken elements



around the fracture. If the same treatment as the first
step is applied to the mesh for the second or later steps,
an incosistent mesh is generated where the elements
are overlapped as shown in Fig.7(a). In this figure the
node where the the fracture has started is indicated
by A and at first new nodes indicated by B and C are
generated by the reconstruction and the relationships
among element 1, 5 and the node C are updated. In
the second or later steps, element 3 and 4 are discon-
nected from the node A and then they are connected
with the node B. This process can reconstruct the mesh
correctly as shown in Fig.7(b). Note that the update
of the mesh topology is not always applied to only two
triangular elements. The number of the triangular el-
ements connected with the node where the fracture is
growing is not always equal to 4 although that is 4 in
Fig6(b). Hence we have to consider the number of ele-
ments connected with the starting node to update the
mesh topology. The toplogy update is carried out by
these two processes.

(b) Reconstruction

(a) Inappropriate mesh

Figure 7: Reconstruction in the second or later steps

We have explained the whole process of the calcula-
tion of the fracture and the related reconstruction of
the model so far. Then we recalculate the stiffness ma-
trix and repeat the process mentioned above to grow
the fracture.

3.4 Texture mapping

The fracture cross section of the paper after the mesh
reconstruction is represented by a line segment since
the section is an edge of the triangular mesh as shown
in Fig.8(a). However the cross section of the real paper
has ravels of fibers and it rarely becomes a straight line
(see Fig.8(b)). Therefore we use a texture to repsent
the cross sections.

3.4.1 How to treat texture

We represent the fracture cross sections by mapping
textures generated by the noise function along them.
We make two cross section lines facing each other a pair
and adopt the same noise function to them to match
the shapes of the two cross section lines. Although we
use the random noise function, we can avoid overlaps
of the cross sections and obtain natural looking cross
sections by this technique.

(a)Simulated cross section (b) Real paper

Figure 8: Comparison of fracture cross sections

3.4.2 Mapping texture along cross sections

At first we map a rectangular texture onto each edge of
the cross sections. If we allocate rectangular textures
along the cross seciton, it causes a problem of overlap-
ping of the adjacent textures as Figure 9(a) illastrates
the situation. Hence we avoid the overlapping by mod-
ifying the shapes of the textures to share the same edge
between the two adjacent tetxures. The modification
of the textures is carried out by calculating the inter-
sections of the sides of the two consecutive textures
parallel to the edge of the cross section (Fig.9(b)) and
reshaping the textures using the intersection points as
shown in Fig.9(c). Then we paint the texture inside
in the paper color (Fig.9(d)) and outside in the back-
groud color (Fig.9(e)) according to the noise function.
We repeat the same process for the whole cross sections
to map the textures.

Figure 9: Texture-mapping processes

3.4.3 Noise function

In this subsection, we explain about the noise function
used in this research. There are several types of noise
function including Perlin’s noise and the white noise
and Figure 10 shows the results of the applications of
these noise functions to the texture mapping for the
cross sections.

As shown in Fig.10 Perlin’s noise has a clear periodic-
ity and the white noise can not completely erase the lin-
ear shape of the cross section on the other hand. Both



§
LS

(a) Perlin’s noise (b) White noise

Figure 10: Noises

of them are not suitable to our application. Therefore
we adopt the turbulence function[3, 4] to make the tex-
tures.

3.4.4 Turbulence function

The turbulence function is given by

Z e <n01se (2ix ))

where noise(x) is a Perlin’s noise at x. The turbulance
function is a superposition of of n Perlin’s noises of
different periods. Figure 11 shows the variations of the
textures with respect to the changes of n.

yn=1

)n=3
Figure 11: With turbulence functions of various n
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We can obtain more natural looking cross sections by
the turbulence function than the Perlin’s or white noise
function since we do not notice very much either the
periodicity or the linearity of the cross sections. For a
large n, the noise function with a large index ¢ close to
n in Eq.9 does not contribute the value of the turbu-
lence function so much. Hence some n is large enough
depending on the image resolution of the simulation
environment since the appearance of the textures re-
mains almost the same for the larger n than this value.
For our experiments explained in the next section we
used 5 for n any value larger than which did not give
us a better appearance of the texture.

The shape generated by the turbulence function is
a quasi-fractral. A lot of natual objects have fractal
nature and we can say it is more appropriate to use the
turbulence function than other general noise functions
without fractal nature to represent the cross section of
paper because the piece of paper is made from natural
materials.

# of elements | # of nodes | Time (per one step)
64 98 0.7 sec
144 242 1.8 sec
256 450 4.9 sec
400 722 12.2 sec
576 1058 22.2 sec
Table 1: Processing time
4 Results

4.1 Simulation results

We can calculate the node stresses, simulate the frac-
ture growth and achieve natural looking fracture cross
sections generated by the fracture growth by use of the
noise functions as shown in Fig.12 and 13.

4.2 Processing time

To incease the accuracy of the simulation, it is neces-
sary to subdivide the mesh finer and make more tri-
angular elements. The finer mesh can solve the prob-
lem of straight line cross sections that gives unnatural
immpressions and we can obtain natural looking cross
sections without texture mapping because of the high
accuracy of the simulation. However it increses the
number of the nodes and consequently the cost of the
processing time per one step. Figure 12 shows the re-
sults of the 2-step interval until 10 steps of a 98-node
mesh and Figure 13(b), (d), and (e) show those of a
1058-node mesh which has about 10 times nodes of the
model of Fig.12 to increase the accuracy of the simu-
lation. The results after several steps are shown which
have similar clack widths to those of Fig.12. Table 1
shows the relationship between the numbers of the el-
ements and the processing times per one step.

Without texture mapping, the results of the finer
mesh is better than those of the coarser mesh since
natual cross sections are generated without the lineal-
ity of the edges. With texture mapping, both of the
results are similar although the growth of the fracture
are somewhat different. However their processing times
are very different to get the similar results with texture
mapping. These results indicate that the coarse mesh
gives almost the same outputs as the finer mesh in
almost real time other than the accuracy of the simu-
lation.

We can see some difference of the whole behavior of
the deformation of the piece of paper although they
have similar clack widths. One of the cause of the re-
sults is that we use the number of steps instead of time
for the control of the simulation process. The values
used for the deformation of paper are the solution of
the stiffness equation obtained after loading forces to
the model. The obtained displacements of the nodes
take into account the plastic deformation since we do



not take care of the elastic deformation. The fracture
caused by the plastic deformation depends on the mesh
shape. It can be considered that the differences be-
tween the results of the meshes of different fineness
derives from the difference of the number of loading
and that of the amount of the plastic deformation.

5 Conclusions

We can represent the fray of paper at the cross sec-
tion, one of the main feature of paper independently
from the coarseness of the mesh in this research. Fur-
thermore if the high accuracy of the fracture behavior
is not required, we can perform fracture simulations of
paper which yield natural looking cross sections similar
to those with high accuracy in almost real time.

As future work, the irregularity of fiber orientations
should be taken into consideration since the triangu-
lar mesh is regularly generated, the meterial properties
of each node are isotropic and any anisotropic treat-
ment has not been taken. To achieve more natural
looking fracture simulations, it is important how to
model anisotropy of paper. As mentioned in the previ-
ous section, the problem of the deformation difference
bewteen the results of the meshes of different fineness
caused by calculation accuracy should be solved. The
typical fracture pattern of paper encountered in daily
life is that by the three dimensional shear force, not
that by the two dimensional tensile force. We will
study how to implement it as future work.
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(b) With texture

(d) With texture

(e) After 10 steps (f) With texture
Figure 12: Results of 98-node mesh
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(a) 98 node mesh (b) 1058-node mesh

(c) Without noise (d) Without noise
(e) With noise (f) With noise

Figure 13: 98- and 1058-node meshes




