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Abstract

Curvature and variation of curvature are the essential factors in determining the fairness of a surface. Unfortunately, most of the traditional
surface representation schemes do not provide users with direct manipulation techniques of these quantities. Streamline modeling, a recently
proposed free-form surface design methodology, is aimed at overcoming this shortcoming by allowing a user to control tangent vectors (and,
consequently, curvature and variation of curvature) of the surface to be designed directly. A free-form surface is regarded as a set of
streamlines: iso-parametric lines defined by blending directions of tangent vectors instead of blending positions of control points. This new
surface design methodology can generate high quality smooth surfaces but requires much processing power for tangent vector blending. In
this paper, we present subdivision based blending techniques of tangent vectors. These techniques can be used to develop subdivision
techniques for curves and surfaces on the Gaussian sphere, such as Doo—Sabin, Catmull-Clark, and Kobbelt subdivisions. We also present
new streamline modeling techniques based on the new tangent vector blending techniques. The new techniques reduce the processing time
for the integration process required in streamline modeling. A prototype system based on the new techniques shows that free-form surface
design using the streamline modeling methodology can achieve real-time performance. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Bézier and non-uniform rational B-spline (NURBS)
surfaces are the most popular surface representations used
in graphics and various CAD/CAM applications due to their
nice characteristics such as convex hull/local control prop-
erties, small energy, and numerical stability [6]. The main
idea of these surface construction schemes is to blend posi-
tions of control points to define surface shapes. However,
they have potential instability on curvature distribution and
variation of curvature: these quantities may change drama-
tically due to a simple reposition of the control points, and
they may have complicated curvature or variation of curva-
ture profiles because they are not parametrized according to
arc length and the curvature formulation has a square root
term in its denominator even though they are polynomial
surfaces.

Streamline modeling is a free-form surface design meth-
odology proposed by Miura et al. [10] to overcome the
instability problem of traditional shape representation
schemes. The new method is intended to provide the users
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with direct control of the curvature and variation of curva-
ture of a surface, the essential factors in determining the
fairness of a surface.

In streamline modeling, directions of the tangent vectors
not positions of the control points are blended to define arc
length parametrized fair curves called streamlines and a
surface is constructed as a set of streamlines. The streamline
modeling concept itself seems to be promising in that it can
generate high-quality smooth surfaces stably, but the system
described in Ref. [10] failed to be efficiently interactive
because the blending technique of tangent vectors needs
much processing power for the integration process to obtain
final shapes. More efficient and powerful blending techni-
ques of tangent vectors are needed.

Subdivision surfaces are becoming more popular in
modeling and graphics communities because of their scal-
ability, numerical stability and code simplicity, as well as
their ability to represent arbitrary topology faces [3]. By
developing subdivision based blending techniques of
tangent vectors, we are not only able to develop subdivision
techniques for curves and surfaces on the Gaussian sphere, a
unit sphere in three dimensional space whose points are unit
tangent vectors, but also reduce the processing time for the
integration process required in streamline modeling. These
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Fig. 1. Streamlines as iso-parametric curves.

techniques will be presented in this paper. A prototype
system based on these techniques shows that free-form
surface design using the streamline modeling approach
can achieve real-time performance.

The remainder of this paper is organized as follows. The
basic concept of streamline modeling is reviewed in Section
2. Properties of curves and surfaces on the Gaussian sphere
and new subdivision techniques for them are discussed and
presented in Sections 3 and 4. Implementation issues of
streamline modeling with subdivision surfaces on the Gaus-
sian sphere are addressed in Section 5. Several surface
examples designed with our prototype system are shown
in Section 6. Concluding remarks and comments on future
research directions are given in Section 7.

2. Basic concept of streamline modeling

The basic idea of streamline modeling is to construct a
parametric surface as a set of iso-parametric curves called
streamlines, as shown in Fig. 1, which are defined by blend-
ing tangent vectors instead of positions. Each streamline has
a constant parameter value 7, and starts from a point at
S(so, o) in the positive or negative s direction. As shown
in Fig. 1(a), so may be equal to the minimum value s,,;,, the
maximum value s, of s, or a value in between, as shown in
Fig. 1(b). Fig. 2 shows examples of surfaces designed based
on the streamline modeling concept [13]. Each streamline is
defined by blending nine control tangent vectors displayed
as yellow arrows. The surfaces are deformed by changing
the directions of their tangent vectors.

Given a surface S(s, 1), if the first partial derivative of the
surface with respect to the arc length parameter s,
38 (s, 1)/ ds = s(s, 1) is known, then the surface can be defined
by

S

S(s, 1) = S(sg. 1) + J s(u, t)du )

Sy
where s, is a fixed point in s parameter space and the curve
S(so, tp) is called an initial curve. If s < s, the above equa-
tion should be interpreted as

S

S(s, 1) = S(so. 1) — J ' s(u, Hdu. 2)

N

Eq. (1) shows that if an initial curve in parameter ¢ with s

(a) The tangent vector at the center of the surface
points down.

(¢) The tangent at the center points upward.

Fig. 2. Surface examples of streamline modeling (QI surfaces). (a) The
tangent vector at the center of the surface points down; (b) the tangent at
the center points to the side; (c) the tangent at the center points upward. Red
and green lines are x and y axes, respectively.

fixed, s =5y, and the first partial derivative s(s, t) with
respect to s over the entire parameter space are given,
then one can construct a surface by integrating the first
derivative as does (1). Since parameter s is the arc length,
the length of each streamline depends on the maximum
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value of s only. The maximum value of s can be made t-
dependent.

Eq. (1) shows that the first derivative S(s, f) with respect
to t, S(s, 1)/dt = s(s, 1), is given by

{s.1) = ‘9S(;’ Dy + J L 3)

S0 ot

where ty = dS(so,7)/dt. Note that while parameter s is
defined by arc length, ¢ is not, because the norm of #(s, f)
is not guaranteed to be equal to 1.

Note also that s(s, ) in Eq. (1) is a surface on the Gaussian
sphere. Its points are unit tangent vectors of the surface to be
designed. That is where the concept of blending tangent
vectors to generate free-form surfaces comes in.

3. Curves on the Gaussian sphere

Interpolations of tangent vectors is a key issue in stream-
line modeling, because it determines not only the quality of
the generated surfaces but also the processing speed of the
display and modification process. Hence, a basic problem in
streamline modeling is how to approximate or interpolate
given tangent vectors to generate smooth curves on the
Gaussian sphere. For notational convenience, we shall use
unit quaternions to represent rotations about arbitrary axes
in the rest of this section. We need to review some basic
properties of quaternions first.

3.1. Quaternions

3.1.1. Definition of quaternion

Similar to the definition of a complex number z = a + bi
where a and b are real numbers and i is the imaginary
number, a quaternion ¢ is given by

qg=a+ bi+ ¢+ dk, “4)

where a, b, ¢, d are real numbers and i, j and k are different
imaginary units. For given two quaternions gy, = ay + byi +
coj T dokand q; = a; + byi + ¢|j + d,k the addition rule is
defined by

qo + q1 = (ap + ay) + (bo + by)i + (co + ¢1)j + (do + dy)k.

®)

Subtraction is defined as an inverse operation of addition.
Multiplication among i, j and k is defined by

F=-1, j=-1, K=-1, ij =k,
Ji= —k, Jjk=1, kj = —i, ki = j, (6)
ik = —j

Hence
doq1 = (aoar — boby — cocy — dody)
+ (aoh; + boa; + cody — docy)i
+ (apc; + coay + doby — bod,)j
+ (aod, + doa, + byc; — coby k. 7

qoq 1s called the product of gy and g;. As the above equation
indicates, generally goq; # q19o- Division is defined as an
inverse operation of multiplication. Since multiplication of
quaternions is noncommutative, there exist right and left
quotients.

The conjugate § of g=a + bi + ¢j + dk is defined as
follows:

Gg=a—bi—cj— dk. (8)
It is easy to see that
qq = qq = |q|2= @+ b+ A+ )

|g| is called the norm of ¢. Quaternion norm is multiplica-
tion-invariant, i.e.

9091 = lgollg1. (10)
The inverse ¢ — ' of a quaternion ¢ =a + bi + ¢j + dk
satisfies the condition gg — ' = 1 and can be expressed as
_ 1 q
1 ; .
g =-—7>(a—bi—c¢—dk)= —5. (11)
lgI? lgI?

Multiplication of a quaternion by its inverse does not
depend on the order. It is easy to verify that ¢ — 'g = 1.

Eq. (7) shows that the product of two pure vector
quaternions (whose real parts are equal to 0) gy =
byi + coj + dok and g = byi + c¢1j + d ik is given by

q091 = —(q0.91) + [40. 1] (12)

where

(90-91) = boby + coey + dod, (13)

and

[90-q1] = (cody — docy)i + (doby — body)j + (boc; — coby)k.
(14)

(90, q1) and [qo, q;] are identical to the scalar and cross
products in three dimensional space, respectively if i, j
and k correspond to x, y, and z axes.

3.1.2. Rotation
Given a unit quaternion ¢ € §° a 3D rotation RQ € SO(3)
is defined as follows:

— -1 3
R,(v) =qvq ~, for vy ER, (15)

where v = (x, y, 7) is interpreted as a quaternion (0, x, y, z)
and quaternion multiplication is assumed for the product. If
q = cosf + Vsinf € §3 for an angle 6 and a unit vector
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t
End tangent

Total length L
Initial point
P
to

Initial tangent

Fig. 3. Interpolation problem: finding a smooth curve whose initial point,
tangent vectors at its initial and end points, and total length are given.

$ € §°, then R, is arotation by an angle of 26 about the axis
¥ [7]. When a smooth rotation curve r,,,) € SO(3) has an
angular derivative 2w(u) € R? (if u is time, then it is an
angular velocity), the unit quaternion curve g(u) € S” satis-
fies:

d
i]i(u) = qu)o(u). (16)
u

The unit quaternion multiplication is not commutative;
therefore, the order of multiplication is thus very important.
Miura [11]used the global frame because it is convenient to
define curves in a fixed frame. In addition, the global frame
is essential for our new unit quaternion curve construction
scheme (see Section 4).

Given a vector v = 8% € R’ with$ € Sz, the exponential
of v, defined as follows

expr) = S f—, — cosf + Psinf € S°, (17)
i= U

is a unit quaternion, which represents a rotation by an angle
of 26 about the axis ¥, where v' is computed using the
quaternion multiplication. The exponential function exp
can be interpreted as a mapping from an angular derivative
vector (measured in R*) to a unit quaternion which repre-
sents a rotation.

Given two unit quaternions ¢, and ¢q;, the geodesic curve,
or the spherical interpolation function (slerp) yqo, (1) =
slerp(q,, q1, u) € S? (which connects qo and q) is given by

Vaoar () = slerp(go, 41,1) = qoexp(log(a a1 Ju)

= ao(90'a1)" (18)

3.2. Interpolation of tangent vectors

A simple tangent vector interpolation problem: ‘finding a
smooth curve in 3D space whose initial point, tangent

e
vto,t1

t.

[to,tl] £ mto,t:
to

Fig. 4. The axis of rotation.

vectors at its initial and end points and total length are
given,” will be discussed here (Fig. 3). This problem is
different from that of interpolating positions of points. The
most natural and desirable answer is a circular arc, because
if we rotate its tangent with an angle proportional to arc
length, the resulting curve becomes a circular arc, which
has constant curvature. The interpolation of two tangent
vectors by circular arc achieves the minimum variational
energy of variation of curvature because the variation of
curvature for a circular arc is always zero.

For two given unit tangent vectors t, = gobgo = and t, =
qlﬁoqfl where ¢, and ¢, are quate:rnions,l the geodesic
curve vy,,t(u) on the Gaussian sphere, connecting the end
points of the two unit tangent vectors ¢, and ¢, is a great arc
between the two end points and is given by

YViou, ) = o, Wlog sy, (W), (19)
where
0 0
Gro.r, (W) = cos( l%‘l' u) + ﬁsin( t;‘tl u) = exp(wzo,zlu).
(20)

o1 is equivalent to an angular velocity of the rotation if
parameter u is regarded as time, and its direction is equal to
the cross product of ¢, and ¢, as shown in Fig. 4 [10]. w, , is
given by

ty Xt 1

1. _
Wy = 7SN l(ltOthl)i =

2 lto xt,| 2 61 P10 @D

where 6, , is the angle between ¢, and ¢, [t; X ¢,| is the norm
of ty X t; and ¥, , is a unit vector whose direction is equal to
ty X t.

The above w, , makes v, , (1) satisty v,,t(0) =# and
Yi,ot1(1) = ¢,. The resulting curve, whose tangent is given by
Doty (u)toq,;}l (u), is a circular arc. Furthermore, .t
depends on £, and ¢, only, it does not depend on the choices
of gyor g; thatare not unique for#, and ¢,. If one uses
w1 =log(qo l) as used in Ref. [8], the resulting curve in
general is not a circular arc.

The above argument shows that a simple linear

! Note that for a given tangent vector ¢, ¢ does not uniquely satisfy
t= qﬁoqfl, as infinitely many rotations are possible to change ¥, to .
Assume 1?0=(1,0,0). q is given by, for example, cosB + ¥sinB =
(cosp, 0, cosasinB, sinasinf).
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combination of tangent vectors is not suitable for construct-
ing a curve that is a locus of tangent vectors for streamline
modeling. Miura et al. [10] proposed a unit quaternion curve
based on the approach of Kim et al. [8] for streamline
modeling as follows:

1
q(u) = (l_lexp(wié,-,k(u)))qo, (22)

i=n

where B;(u) is a cumulative form of the B-spline basis
function Bi,k of order k defined by

B (u) = ZBi,k(u) (23)
j=1
i+tk—1
Z B]’k(bl) if u; <u< uquﬂ
| & 24)
1 if U= Uy

The w; used in Eq. (22) is defined by
Li1 Xt

1 . —1
w; = —SsIn 1 Xt; .
i (ll 1 zl) |ti—1Xti|

> (26)

The above w; makes sense in the global frame because it is
defined by vectors in the global frame. The integral curve
whose tangent is given by g(u)voqg(u) — ' was proposed as
the unit quaternion integral (QI) curve in Ref. [10].

3.3. Linear combination of tangent vectors

Although the unit quaternion curve described above
produces a smooth curve on the Gaussian sphere, it suffers
two serious problems. One is that is does not produce an
identical curve when the same tangent vectors ¢,,i =0, ..., n
are specified in reverse order: the resulting unit quaternion
curves ¢o(u) and g, (u) are

i=n

1
do = Goltost1s s, ] () = (l_[ exp(wiéi,k(u)))qo

1
qr = qr[tn»tnfla "’atO](u) = (l_[exp(_wigi,k(u)))

i=n

1
X (ﬂexp(wi(u»)qo (25)

with
rr(u) 7 qo(l - Lt) (27)

The other problem is that the streamline calculation
process for the unit quaternion curves needs more proces-
sing power. With numerical integration being the only
choice, it takes a long time to compute a streamline if the
integrand involves curve formulae of exponential functions.

To overcome these problems, we shall use subdivision

curves and surfaces on the Gaussian sphere. The basic
idea is to define a smooth curve or surface as the limit of
a sequence of successive refinements. For each refinement,
new points that are linear combinations of old points are
inserted. In order to apply the subdivision concept to S*
space (equivalent to the Gaussian sphere), one needs to
define linear combination of tangent vectors first. In R3,
the mid-point p,, of two points p, and p; is defined by

1
P = E(Po +p1) (28)

In S°, however, the mid-tangent ¢, of two tangents #, and ¢,
can not be defined by

1
tm = E(to + tl) (29)

because the norm of #, would not be of unit length even
though the norms of both ¢, and ¢, are equal to 1. It should be
defined as

b = q(%)toq*l(%) (30)

where
90) = exp(@, ;) 31

and @, , is defined in Eq. (21). Although Eq. (30) uses
quaternion calculus, it can be calculated by addition of
two tangent vectors and its normalization in a shorter
processing time as follows:

ity

= - (32)
|t X 1]

m

We define a linear interpolation of two tangent vectors ¢, and
t, as

tw) = (1 — wity © ut, = quiteg ™' (). (33)
Note that the above interpolation is commutative, i.e.
(1 - M)fo @ ut1 = Mtl @ (1 - M)to (34)

3.4. General formulation of linear combination

As mentioned in the previous subsection, the unit quater-
nion curve ¢go(u) representing a blend of two tangent vectors
and its reversed curve g,(«) are identical in such a sense that
q:(u) = qo(1 — u). Similarly, the result of successive rota-
tions about a fixed axis does not depend on the order of
its rotations and a unit quaternion curve representing such
rotations is identical with its reversed curve. However the
result of successive general rotations about different axes
depends on their order and the corresponding original curve
and its reverse are not identical. In this subsection, we will
propose a method to make the reversed curve identical with
the original curve.

First, consider a general linear combination of points in
R®. A general linear combination p of n+ 1 points p;,
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I1=0, ...,nin R’ is defined by
p=cwpotcpt+ - t+ep, (35)

where ¢;, i=0, ..., n, are coefficients. Since our method
depends on whether 7 is even or odd, we will discuss the
cases that n =2 and n =23 first, and then deal with the
general case.

If n =2, Eq. (35) can be rewritten as follows:

P =p[po.P1,P2] = copo + c1p1 + copa. (36)

For subdivision, because of the requirement of invariance
under affine transformation, the sum of the coefficients Y g ¢;
should be equal to 1. Hence,

Co+C1+C2: 1. (37)

By considering the identify of the reversed curve with the
original, we can rewrite Eq. (37) as follows:

1 1
p= (C()Po + *Cll’l) + (*01171 + C2P2)

2 2
1
1 c 5¢
:<Co+ Ecl) 701 po+ —2— P
¢+ = ¢+ =
072 2
1
1 5¢1 c
+(§c1+c2) —2—pt—p| G9
—c t o —c t o
2" 2

For example, if co = 1/7, ¢, = 2/7, ¢c; = 4/7, then,
_2(1 +1 )+5(1 +4 ) (39)
p= 7 21’0 2171 7 5P1 5P2 .

Based on the above transformation, a linear combination ¢ of
3 tangents &, ¢, and £, in $? can be defined as repetitions of
the binary operator @ :

t= t[to,tl,tz] = Coto ) Cltl EB C2t2

1
1 5 €l
=|c + —C ‘o tO ) 2 tl
2 1 1
Co + EC] Co + EC]
1
1 5 €1
® (—c1 + c2) 2 402 4| w@o
2 1
ECI + Cy 56‘1 + Cy

In the above definition, if the coefficients c; are functions of
parameter u (i.e. ¢y = co(u), c; = c1(u), and c; = c(u) and
furthermore, c,(1t) = co(1 — u) and c|(u) = ¢;(1 — u) (these
conditions are satisfied if the coefficients are Bernstein basis
functions), then the following equation is satisfied:

t(u) =t,(1 —u) 41)
where

t()(u) = to [t05t1 > t2](u)a (42)

tr(u) = tr[tZ’tl»tO](u)‘ (43)

When n =3, Eq. (35) is transformed into the following
form, which is simpler than the n = 2 case

= o 2!
t=(C0+C1)<CO+ to@ tl)

Cy ¢y + ¢
Cy C3
@c+c< - t). 44
(c2 +c3) aral o an (44)

In this case the reversed curve is identical with the original
curve as well.

In the general case, if n is even, Eq. (35) is subdivided
into two portions, similar to the n = 2 case, as follows:

1
—Cn
o 2 2
t=coty +city + +et, =dy| =ty + -+ t
Colp ™ 11 Cnly 0 doo dy %
1
—Cn
5 c
®d| 22+ + 4,
1 d,
(45)

where dy = cq + -+ + (12)c,p, dy = (12)cp + -+ + ¢y,
and dy + d; = 1. If n is odd, similar to the n =3 case ¢ is
written as

Cn—1
C,
t=coly + ity + o+ ety = do(doto +o + —2 t,,l)
0

dy 3
1
Cﬂl EC;
D d, 2t ot t
d 5 d "

(46)

Where dy=co+ -+ C(n*l)/2’ d = C(n+1)2 +--+c¢,. In
either case, we have dy + d; = 1. This follows from the
requirement of invariance under affine transformations.
One then simply repeats the same process recursively on
each portion of the subdivided expression, and the linear
combination of tangent vectors is defined.

In the linear combination, the sum of the operands invol-
ving a € operator is always equal to 1. For instance, in Eq.
(4), the sum of the operands sandwiching the first & is

1
—¢
e et § @7
Co + ECI Co + EC]
The sum of the operands of the second @ is
1 1
(C0+ §C1)+<ECI+C2):C0+C1+C2:1. (48)

This follows from the requirement of invariance under affine
transformation. Hence, the above definition is well defined.
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This definition of linear combination of tangent vectors
makes the reversed curve identical with the original curve.
This definition also allows the linear combination to be
calculated without quaternion calculus in a shorter time by
the repetition of rotation calculations.

3.5. Chaikin’s algorithm

Chaikin’s algorithm [2] generates a quadratic B-spline
curve from a polygon by successively cutting its corners.
Each subdivision generates two new points on each polygon
leg at (1/4, 3/4). For a polygon with n + 1 vertices p/ at the
subdivision length j, two new points defined as follows are
inserted into the polygon leg p'p’.,

A 3.1 .
P = Zl’i‘ + Zl’ﬂﬂ’ (49)

. 1. 3.
2;111 = Zl’li + ZPIHI' (50)

The above equations use only two points to generate a
new point. It is straightforward to extend them to curves on
the Gaussian sphere using the linear interpolation process
given by Eq. (33), as follows:

= 0 Gt e
. 1. 3 .
Bty = Ztli 52 thﬂ’ (52)

Note that Eqgs. (51) and (52) can be calculated very
quickly because, for example, Eq. (51) can be rewritten as
follows:

E i+1

g = 24@2(214@ / ) (53)

It can be calculated by performing the addition of two
vectors and its normalization twice.

3.6. B-spline subdivision

B-spline division is a generalization of Chaikin’s algo-
rithm and it obeys a refinement equation [14]. The refine-
ment equation for B-splines of degree / is given by

11+ 1
By(1) = 5 kzo( ) )B,(zt — k). (54)

Quadratic B-spline division is identical to Chaikin’s algo-
rithm and cubic B-spline subdivision is given by

A 1, . A .
i = g P+ 60l + ). (55)

) 1, . .
2T+11 = E(Pi‘ﬂ +I’§+2)~ (56)

To extend it to curves on the Gaussian sphere, one can use

our tangent blending method with the following equations:

; 1(1,; 3. 1(3; 1
£ = 5(1’? D Z’iﬂ) ® 5(—4“ ® Zt]"”)’ (57)

. 1. 1.
By = Et;-%—l ® §t§+2v (58)

Similar to Chaikin’s algorithm, the above expressions can
be calculated by performing the addition of two vectors and

its normalization five times and once for Egs. (57) and (58),
respectively.

3.7. 4-point interpolatory subdivision

A modified 4-point interpolatory subdivision refines
polygons with

L=pl (59)

i+1 _8+(1)

2i+1 "= T( IZ+P§+1) - %(Péfl +1’§+2) (60)

where 0 < w < 2(\/5 — 1) is sufficient to ensure conver-
gence to a smooth limit curve [5]. The standard value is
o = 1 with which the scheme has an order three precision.

On the Gaussian sphere, using the symmetric definition
of @ operation Eq. (60) becomes

hl= (- ph e B)

2 8! 8 !
18+ w ; W ;
® E(Tt;“ ® _§t§+z)- (61)

Coefficient — w/8 is negative and (8 + w)/8 is larger than 1,
but Eq. (33) is well defined for a parameter u smaller than O
or larger than 1. It can be used in Eq. (61) for curves on the
Gaussian sphere.

Fig. 5(a) shows a 4-point interpolatory subdivision curve.
Its subdivision depth (level of recursive subdivision) is 3.
We can see its interpolatory nature in the figure. For
comparison, Fig. 5(b) shows a B-spline unit quaternion
curve proposed by Miura et al. [10]. The curve approxi-
mates the tangent vectors only.

Table 1 shows processing times of tangent calculations
for Chaikin’s, cubic B-spline, and 4-point interpolatory
subdivisions and B-spline unit quaternion curves of several
orders. The number of the control tangents is the same for
every curve although the numbers of calculated tangents for
Chaikin’s and cubic B-spline subdivisions are different from
others. Each subdivision generates different number of
tangents by one subdivision step, for example if the number
of the original control tangents is equal to 5, then Chaikin’s
algorithm generates 8 tangents, cubic B-spline and 4-point
interpolatory subdivisions generate 7 and 9 tangents, respec-
tively. For B-spline unit quaternion curves, any number of
tangents can be calculated and their processing times are
shown for the same number of tangents’ calculations as
the 4-point interpolatory case.



982 K.T. Miura et al. / Computer-Aided Design 33 (2001) 975-987

Chaikin’s algorithm is much faster even though the
number of calculated tangents is 1.5 times of those of others.
This is because Egs. (51) and (52) can be calculated by
performing the addition of two vectors and its normalization
twice, as mentioned in Subsection 3.5. By the same reason,
cubic B-spline subdivision is also fast, but slower than Chai-
kin’s algorithm because of more complex subdivision
formulae. Even the 4-point interpolatory subdivision is
four or five times faster than the B-spline quaternion curves.

4. Surfaces on the Gaussian sphere
4.1. Doo—Sabin and Catmull-Clark subdivision

Doo and Sabin [4] extended Chaikin’s idea for curves to
generate surfaces. A surface is generated from a polyhedral
network by successively cutting off its corners and edges.
An algorithm may be given as follows [12]:

1. Forevery vertex V/ of the polyhedron P/, a new vertex Vl’ A
called an image, is generated on each face adjacent to Vi

2. For each face F,’ of P/, a new face, called an F-face, is
constructed by connecting the images vertices V/ i gener-
ated in Step 1.

3. For each edge E;, common to two faces Fj and F} and a new
4-sided face, called an E- face, is constructed by connected
the images of the end vertices of E! on the faces Fj and F.

4. For each vertex V{ 1 , where n faces meet, a new face, called
a V-face, is constructed by connecting the images of V! on
the faces meeting at V7.

An image vertex V{ i generated in Step 1 depends only on the
vertices of P/ and is given by

VITh= 3 ay Vi (62)

where Vi are vertices of the old faces and a;; are coefficients
defined as follows:

The Catmull-Clark subdivision method [1] is similar to
the Doo—Sabin method, but is based on the tensor product
bicubic splines. It produces surfaces that are C* everywhere
except at extraordinary vertices, where they are C'. Similar
to the Doo—Sabin scheme, all coefficients of the subdivision
equations of the Catmull-Clark are positive and our blend-
ing method is applicable as well.

4.2. Kobbelt subdivision

The Kobbelt surface scheme is a simple extension of the
4-point interpolatory subdivision to surfaces [9]. The
vertices of a quadrilateral mesh are indexed locally so that
each face can be represented as a sequence of vertices:
5Jzk {pik’p]z+lk’p]1+1k+l’p]1k+l }. The points Pl+ of the
refined net can be classified into three dlSJOll‘lted groups.
The vertex-points ply., = pl., , are ﬁxed due to the inter-
polatory property. The edge-points p’, ~+12 and Plz: S+ Are
computed by applying the 4-point rule in the corresponding
grid direction, e.g.

i1 8 +w

2i+12k * 16 (plzk +pll:+1,k) o Ta;(l’iﬂ,k +Plz:+2)~ (64)

The face-points p’;l,’zk +; are computed by applying
the 4-point rule to four consecutive edge-points
Phitigk—2s - P121+12k+4 Orplzl 22/<+1’~--’P]21+4,2k+1-

Following Eq. (61), subdivision can be performed in the
surface case as well, but mainly on two choices of the blend-
ing order: one is to blend tangents in the s parameter direc-
tion first and then in the ¢ parameter direction; the other is to
blend ¢ first and then s. As effects of different blending
orders are not clear and their processing loads are the
same, the users are allowed to select the blending order of
their own choice in our prototype system.

5. Streamline modeling with subdivision surfaces on the
Gaussian sphere

The main design task in streamline modeling is to specify

n+35 . tangent vectors in a parameter direction s(s, f) as well as the
ik = an for 1=k (63) initial curve S(sy, #) in Eq. (1). Subdivision surfaces on the
Gaussian sphere are used to specify s(s, ).
i—k As shown in Fig. 6, an open quadrilateral polygonal mesh
3+ ZCOS<2"T(T)) o is used in the parameter space to specify the original topo-
i = an ’ for —i#j. logical structure of a subdivision surface on the Gaussian
Table 1
Processing times
Curve type Order Number of control tangents Number of calculated tangents Time (ms)
Subdivision (Chaikin) 5 386 (depth =7) 0.31
Subdivision (cubic B-spline) 5 259 (depth =7) 0.63
Subdivision (4 interpol.) 5 257 (depth = 6) 1.09
B-spline 3 5 257 4.69
B-spline 4 5 257 4.84
B-spline 5 5 257 5.16
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Fig. 5. Comparison of 4-point interpolatory subdivision and B-spline
quaternion curves on the Gaussian sphere. (a) 4-point interpolatory subdi-
vision curve (red curve, w = 1, subdivision length = 3). Red ball corre-
sponds to the first vertex (initial tangent vector) and yellow balls
correspond to vertices of the subdivision curve on the Gaussian sphere.
Blue curves are great arcs between two points on the sphere; (b) B-spline
unit quaternion curve proposed by Miura et al. [10] (red curve). Blue curves
are great arcs between two points on the sphere.

sphere as well as its vertex distribution. Each horizontal line
of the mesh with a constant parameter value 7 corresponds to
a streamline. In the figure L, is the total length of the initial
curve. The total length L; in s parameter direction can be
specified as a function of ¢. This means that each streamline
can have a proper total length of its own. After the specifi-
cation of the topological structure of the subdivision
surface, the next task for the designer is to specify Ly(?)
and tangent vectors corresponding to its vertices. At this
initial stage, a streamline whose ¢ value is equal to f, is
generated by using a tangent vector sequence on a line of
the subdivision surface as follows: if the tangent vector
sequence is given by (£, ¢, ..., t,) and its ¢ parameter for

So
s

o 1vertex

Fig. 6. Specification of the topological structure of a division surface on the
Gaussian sphere.

Fig. 7. Arrows corresponding to tangent vectors. Red curve is a 4-point
interpolatory subdivision curve (w = 1, subdivision depth = 3). Red arrow
corresponds to the first vertex (initial tangent vector) and yellow arrows
correspond to vertices of the subdivision curve on the Gaussian sphere.
Blue curves are great arcs between two points on the sphere.

the corresponding vertices in the parameter space is

(50, 15 .--» S»), then the vertices of the streamline p;
(i=0, ...,n+ 1) are calculated by
Po = S(s0: 1a); (65)

1
pL=po+ 5(51 = so)to»

1
Pi+1=p;i t E(SH—I = Si—1)tis for

1
Pn+1 = Pn + E(sn - Sn—l)tn.

By carrying out the subdivision steps, new streamlines are
generated and for some types of subdivision surfaces, the
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Fig. 8. Car model no. 1.1. (a) Surface defined with original mesh (subdivision depth = 0). Yellow arrows are tangent vectors corresponding to vertices of the
subdivision surfaces on the Gaussian sphere. (b) With subdivision surface (subdivision depth = 1). Red arrows are tangent vectors corresponding to refined

vertices.

streamlines that already exist are refined (for example, the
Kobbelt surface). The tangent vector sequence of the newly
generated streamlines are obtained as new vertices of the
subdivision surface on the Gaussian sphere. The corre-
sponding ¢ and s sequence values are obtained by the
same type of subdivision of the mesh in the parameter
space. Note that the 7 value must be consistent for a stream-
line and its value is taken from the initial curve S(sy, f). The
vertices of the new and refined streamlines are calculated
using the approach described above.

The vertices in Fig. 6 are allocated on vertical lines of the
mesh to make the figure simple. It is, however, not neces-
sary for adjacent streamlines to have the same length values
s; for vertically adjacent vertices. If a larger interval is speci-
fied, say s;+; — s; is made larger, then the tangent of the
streamline varies slowly there and it, hence, has smaller
curvature. In contrast, if a smaller interval is specified, the

streamline would have larger curvature instead. It is possi-
ble to perform multi-resolution tangent editing after some
subdivision steps in a way similar to the ordinary subdivi-
sion surfaces.

6. Surface examples of streamline modeling

Several surfaces designed with subdivision surfaces on
the Gaussian sphere are shown in this section. These
surfaces are generated using Kobbelt type subdivision
because its interpolation nature makes the manipulation
process more intuitive for the users. Approximation subdi-
vision schemes like B-spline subdivision can produce
smoother surfaces, but are not so intuitive for the users in
the streamline modeling process because modeling with
tangent vectors itself is not as intuitive as with positions.
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Fig. 9. Car model no. 1.2. (a) With subdivision surface (subdivision depth = 2); (b) with subdivision surface (subdivision depth = 3). Only half of the red
arrows are shown.

Fig. 10. Car model no. 1.3. Shaded image (subdivision depth = 3).
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Fig. 11. Car model no. 2. (a) Surface defined with original mesh (subdivision depth = 0). Yellow arrows are tangent vectors corresponding to vertices of the
subdivision surfaces on the Gaussian sphere; (b) with subdivision surface (subdivision depth = 3). Red arrows are tangent vectors corresponding to refined

vertices. Only half of the red arrows are shown.

To design a streamline, one must specify several unit
tangent vectors. Specifying a unit vector is equivalent to
specifying a point on the Gaussian sphere. Tools have
been provided in our prototype system for the user to select
and drag a point of the Gaussian sphere (Fig. 5) or select and
drag an arrow (Fig. 7). The arrows have specially shaped
heads according to their index numbers. Hence, the user can
select any of them, even though several arrows are oriented
in the same direction.

Slider tools are also provided for the user to change the x,
¥, or z coordinate of a tangent vector so as to keep its unit
length and to rotate a tangent vector about an arbitrary axis.
The user is also allowed to change the length coefficient of a
tangent vector and, hence, the s; value, as mentioned in the
previous section.

The initial curves can be specified by any type of free-

form curve representation. In our system, a unit QI curve
[10] is used as the initial curve, because a QI curve is
streamline modeling based and its shape is controlled by
the tangent vectors. Using a QI curve as the initial curve
does not hamper the performance of the system even though
it takes slightly more processing power since only one initial
curve is needed to define a surface.

Figs. 8—10 show the refining process of streamline
modeling with subdivision surfaces. The original mesh
of the subdivision surface has 9 X 6 vertices (Fig. 8(a)).
Surfaces defined with refined subdivision surfaces are
shown in Fig. 8(b), (subdivision depth = 1), Fig. 9(a),
(subdivision depth=12), and Fig. 9(b), (subdivision
depth = 3). A shaded image of the surface shown in
Fig. 9(b) is shown in Fig. 10. Fig. 11 shows a reshaped
model.
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7. Conclusions

New approximation and interpolation methods for points
on the Gaussian sphere, which correspond to unit tangent
vectors, have been developed. Subdivision surfaces
generated from polygons on the Gaussian sphere are used
in the approximation and interpolation process.

New streamline modeling techniques using subdivision
surfaces on the Gaussian sphere have also been proposed.
A prototype design system based on these techniques is
developed. The new techniques inherit virtues of the origi-
nal subdivision system and provide a new operability to
streamline modeling. Advantages of the new techniques
include real-time performance achieved by integration
process over coarse subdivision surfaces and easiness in
generating high quality fair, smooth surfaces based on
streamline modeling.

Several areas require further study in the future. One
interesting topic is to deal with arbitrary topology in stream-
line modeling. This is one of the most important properties
of subdivision surfaces. One can also think about merger
and separation of streamlines. Currently, streamlines can be
specified in fixed parameter direction. However, it seems
possible to switch parameters from one (s) to the other (7).
Future research is necessary on where and how should the
parameters be switched. Research in this area could lead to
the design of arbitrary topology faces.

Another topic of interest is the multi-resolution represen-
tation for streamline modeling. This is a desirable, and yet
difficult, job because of the integration process.
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