Adaptive refinement for B-spline subdivision curves

Kenjiro T. Miura*, Junji Sonef, Atsushi Yamashita*,
Toru Kaneko*, Minoru Ueda!, Minetada Osano?
*Department of Mechanical Engineering, Shizuoka University
3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
TTokyo Institute of Polytechnics, ¥University of Aizu
voice: [+81](53)478-1074; fax: [+81](53)478-1074
e-mail: ktmiura@eng.shizuoka.ac.jp
www: http://ktmll.eng.shizuoka.ac. jp/

Abstract

The control polygons of B-spline subdivision
curves are usually refined uniformly using a tech-
nique called knot-doubling. This uniform refine-
ment approach would perform unnecessary sub-
division steps on portions already close to the
limit curve enough and, consequently, cause un-
necessary (exponential) increase on the number of
line segments in the refined polygons. This pa-
per overcomes this problem by proposing a local
refinement technique for the control polygons of
B-spline subdivision curves. Local refinement is
achieved by selectively inserting new knots at mid-
points of knot intervals. Efficient adaptive sub-
division can be easily realized based on the new
technique.
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1 Introduction

Subdivision curves and surfaces are powerful tools
for graphical modeling and animation because of
their scalability, numerical stability, simplicity in
coding and, especially, their ability to represent
complex shapes of arbitrary topology . They have
already been used to represent free-form surfaces
in several commercial systems. Doo-Sabin and
Catmull-Clark subdivision surfaces are two of the
most popular subdivision schemes. These subdivi-
sion surfaces are based on uniform tensor product
B-spline surfaces, whose non-uniform rational ex-
tension (NURBS) is an industry standard in com-
puter graphics as well as CAD/CAM systems.

A subdivision curve is the limit curve of a se-
quence of line segments generated by iteratively
refining a given control polygon. The refining pro-
cess is usually performed uniformly on all the seg-
ments of the current polygon using a technique
called knot-doubling. This uniform subdivision
approach would perform unnecessary subdivision
steps on regions that are already flat enough and,
consequently, cause unnecessary (exponential) in-
crease on the number of faces in the resulting
mesh.

In this paper, a technique to solve the above
problem is proposed. The technique performs lo-
cal refinement of a subdivision curve by selectively
inserting knots at midpoints of knot intervals. The
new technique is named SNUS for selective non-
uniform subdivision because the selective knot in-
sertion process is similar to that of non-uniform
recursive subdivision curves (NURSC) [10], which
generalize non-uniform B-spline curves by assign-
ing knot intervals to vertices or edges of the con-
trol polygons. Efficient adaptive subdivision can
be easily realized based on the new technique as
shown in the paper.

The remainder of this paper is organized as fol-
lows. Related works in adaptive subdivision for
subdivision and parametric surfaces are presented
in Section 2. Selective non-uniform subdivision
techniques for curves are given in Sections 3 and
4. Concluding remarks and future research direc-
tions are given in Section 5.



2 Related work

Subdivision defines smooth surfaces as the limit of
a sequence of the refinement of polygonal meshes.
For regular patches, this sequence can be defined
by knot insertion [2, 3, 9]. The Oslo algorithm
is well known for the knot insertion scheme for
univariate B-splines [3]. Given a set of knots and
control points, a function is constructed by control
points with breakpoints at the knots. When a
new knot is inserted in a knot sequence, the knot
insertion scheme updates neighbor control points
for representing the same function.

Early subdivision schemes were designed for
generalizing this knot insertion scheme to irreg-
ular meshes [5, 1, 7]. Since knot intervals were
uniformly determined, knots were not represented
explicitly. In this meaning, these schemes can be
said special cases of knot insertion, in which knots
are inserted uniformly at the midpoints of the knot
intervals and the number of knots is doubled dur-
ing each insertion step.

As a subdivision scheme that allows non-
uniform knot intervals, Sederberg et al.[10] pro-
posed non-uniform recursive subdivision surfaces
(NURSS). They showed that non-uniform knot in-
tervals could be used for controlling the limit sur-
faces with creases. However, their scheme was still
based on knot-doubling, and non-uniform knot in-
tervals were not discussed as a means of adaptive
subdivision.

Adaptive subdivision for irregular meshes is one
of the future research trends [12]. We believe
that knot insertion is one of the most promising
schemes for adaptive subdivision.

Another type of approach to adaptive subdivi-
sion is to construct schemes that allow for smooth
transitions between uniform meshes of different
levels. Zorin et al.[13] maintained control points
of each subdivision step using hierarchical struc-
tures, and realized multiresolution editing of hier-
archical meshes . He also described variations of
adaptive subdivision using the similar approach
[14]. Kobbelt [6] and Velho et al. [11] subdi-
vide only locally specified portions of a uniform
mesh to adaptively refine areas of interest. How-
ever these approaches do not have the piecewise
functional representations that makes analyzing
B-splines easier[12].

3 Curve SNUS

3.1 Curve Knot-Doubling

The control polygon of a periodic B-spline subdi-
vision curve is refined by repetitive knot-doubling.
Knot-doubling here refers to the process of in-
serting a new knot at the midpoint of each cur-
rent knot interval[10]. This process doubles the
number of control points that represents the same
curve. For a non-uniform quadratic periodic B-
spline curve, each vertex of the control polygon
corresponds to a single quadratic curve segment
and a knot interval d; is assigned to each control
vertex P;. A knot-doubling process in this case
generates the following new control points Q:

. (di +2di11)Pi + diP;iyq
Qy = 7

z(dz + dH—l)
dit1P;+ (2d; + diy1)Pigy
2(d; + d;iy1)

(1)
(2)

Qi1 =

as shown in Figure 1(a).

(b) Cubic curve.

Figure 1: Non-uniform B-spline curve.

For a periodic cubic B-spline curve, each edge of
the control polygon corresponds to a single cubic



curve segment and the knot intervals are assigned
to its edges instead of its vertices. New control
points @), in this case are calculated by

(di +2di11)Pi + (di + 2d;—1) P
2(d;—1 +di +diy1)
diQo;i 1+ (di—1 +di) P +di1Qq; 1

2(d;—1 + d;)

as illustrated in Figure 1(b).

The above non-selective subdivision scheme by
knot-doubling is problematic where the knot inter-
vals are equal to 0 or much smaller than the other
intervals. For example, if one of the knot inter-
vals d; of a quadratic B-spline curve is equal to 0,
Equations (1) and (2) give us Q9;_; = Q4; = Pj,
i.e., the two consecutive control vertices are iden-
tical. This means that the number of control ver-
tices would increase but the curve would not be
refined. This is the result of inserting a knot into
the joint of two adjacent segments. Further knot-
doubling processes there would actually slow down
the convergence to its limit curve because it would
only accumulate control vertices at the same loca-
tion. Similar problem would also occur around
vertices whose knot intervals are much smaller
than the others.

For a cubic curve, the similar accumulation of
control vertices is unavoidable on an edge whose
knot interval d; is equal to 0 or much smaller than
the others. Equations (3) and (4) are simplified
as follows when d; = 0:
dit1P;+di—1 Pty

(di—1 +diy1)
Qy; Tit Qun +2in+1 (6)

The above equations tell us that Q4;_;, Q»;, and
Q5.1 are on the same edge and the middle point
Q,; does not contribute to the refinement.

3)

Q21+1 =

Qo = (4)

Q2i+1 =

3.2 Selective Knot Insertion

A simple solution to the above problem is not to
insert a knot into the joint of two consecutive seg-
ments or into a small knot interval segment selec-
tively. For a quadratic curve, you should not ‘cut a
corner’ to stop inserting a knot and it is straight-
forward to select effective knot insertions if you
have appropriate criteria. The cubic curve case
is slightly more complicated, but still straightfor-
ward enough as is explained below.

As shown in Figure 2, a knot insertion at the
midpoint of the initial knot interval d; of the non-
uniform cubic B-spline curve can be achieved by
the following update equations (cf. [9]):

R, = dit1Pi—1 +{2(di-1 + d;i) + di+1}P(i‘7)
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A midpoint insertion for the next initial knot in-
terval d; 11 generates three new control vertices S,
Sit1, and S;y9. Simple algebra shows that they
are given by the same equations as Equations (4),
(3), and (9)!, respectively. Further insertions can
be performed by applying the updating process of
the control vertices described by these equations.

Figure 2: Selective knot insertion.

Note that Equations (7) and (9) are similar to
Equations (1) and (2) in the sense that the new
vertices R;_1 and Q9; are moved from the origi-
nal vertices P; and P;41 to new locations on edge
P;P;.,. Even though we perform another mid-
point insertion for the previous knot interval to
the unsubdivided knot interval in the other direc-
tion, shown in Figure 2 as green line segments,
the location of R;_; remains the same. We will
use these facts later in the selective subdivision for
Catmull-Clark surfaces.

'Equation (9) should be applied for the segment P; P, 1,
instead of P;y1P;4o.



4 SNUS in parameter space

We can apply our technique naturally to NURS
curves in the parameter space and use the values
of the knot intervals as a criterion for selecting
knot insertion locations. One of the typical exam-
ples which definitely need SNUS is degree-elevated
subdivision curves. The converted curve is repre-
sented with multiple knots and many of its knot
intervals are equal to 0. The SNUS can avoid in-
serting knots to the polygon where the knot inter-
vals are equal to 0 or relatively very small.

Figure 3 shows cubic B-spline curve examples
subdivided with the SNUS in the parameter space.
Initially, a three-sided uniform quadratic B-spline
subdivision curve is converted to a six-sided non-
unifrom cubic B-spline subdivision curve. The ini-
tial knot intervals of the yellow and red edges of
the cubic B-spline curve are supposed to be 0 and
1, respectively. To clarify the effect of the SNUS,
0.2 is assigned to the yellow edges instead of 0 and
the control polygon for the SNUS to be applied are
scaled up a little. In each figure, the standard sub-
division generated polygons shown in black with
red control points and the SNUS did cyan poly-
gons with blue control points. The SNUS stoped
inserting knots at the knot intervals whose value
are less than 0.1. In figure 3(a) and (b), both sub-
division methods generate the same control poly-
gons, but in (c¢) some control points are not gener-
ated in the SNUS case because the knot intervals
are less than 0.1. We can see the accumulation of
the control points in the standard subdivisoncase
as shown especially in (d).

5 Conclusion

This paper presents a new technique, the SNUS,
for local refinement of B-spline subdivision curves,
which selectively inserts new knots at midpoints of
knot intervals. In the proposed scheme, the limit
points of the all vertices are guaranteed to be on
the limit curve of the original polygon.

One of the future research topics is on local re-
finement by inserting knots at arbitrary positions
instead of midpoints. Since the quality of adaptive
subdivision depends heavily on subdivision crite-
ria, additional work should be devoted to such cri-
teria to extract the maximum power of the SNUS.

knot Interval=1.0

(b) depth=2.

(c) depth=3.

(d) depth=4.

Figure 3: SNUS in parameter space.



References

[1]

2]

3]

[4]

[5]

[6]

8]

[9]

[10]

[11]

E. Catmull, and J. Clark, “Recursively
Generated B-spline Surfaces on Arbitrary
Topological Meshes,” Computer-aided De-
sign, Vol.10, No.6, pp.350-355, 1978.

G. Chaikin, “An Algorithm for High-Speed
Curve Generation,” Computer Graphics and
Image Processing, No.3, pp.346-349, 1974.

E. Cohen, T. Lyche, and R. Resenfeld, “Dis-
crete B-splines and Subdivision Techniques in
Computer Aided Geometric Design and Com-

puter Graphics,” Computer Graphics and Im-
age Processing, Vol.14, No.2, pp.87-111, 1980.

T. DeRose, M. Kass, and T. Truong, “Sub-
division Surfaces in Character Animation,”
Computer Graphics (Proc. of SIGGRAPH
’98), Vol. 32, pp.85-94, July, 1998.

D. Doo, and M. Sabin, “Behavior of Re-
cursive Division Faces Near Extraordinary
Points,”  Computer-aided Design, Vol.10,
No.6, pp.356-360, 1978.

“V/3-subdivision,”  Computer
of SIGGRAPH 2000),

L. Kobbelt,
Graphics  (Proc.
pp.103-112, 2000.

C. Loop, “Smooth Subdivision Surfaces
Based on Triangles.” Master Thesis, Uni-
versity of Utah, Department of Mathematics,
1987.

K.T. Miura, F. Cheng, and L. Wang, “Fine
Tuning: Curve and Surface Deformation by
Scaling Derivatives,” Proc. Pacific Graphics
2001, pp.150-159, 2001.

L. Piegl, and W. Tiller, The NURBS Book,
2nd Ed. Springer-Verlag, 1997.

T.W. Sederberg, J. Zheng, D. Sewell and M.
Sabin, “Non-Uniform Recursive Subdivision

Surfaces,” Computer Graphics (Proc. of SIG-
GRAPH’98) Vol. 32, pp.387-394, July, 1998.

L. Velho and D. Zorin, “4-8 Subdivision,”
Computer Aided Geometric Design, Vol.18,
No.5, pp.397-427, 2001.

[12]

[14]

J. Warren, Subdivision Methods for Geomet-
ric Design: A Constructive Approach,” Mor-

gan Kaufmann Publishers, San Francisco,
2002.

D. Zorin, P. Schroder, and W. Sweldens,
“Interactive Multiresolution Mesh Edit-
ing,” Computer Graphics (Proc. of SIG-
GRAPH’97) , pp.259-268, 1997.

D.Zorin and P. Schroder, “Implementing
Subdivision and Multiresolution Surfaces,”
SIGGRAPH 2000 Course Notes, pp.105-115,
2000.



