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ABSTRACT
The log-aesthetic curves include the logarithmic (equiangu-
lar) spiral, clothoid, and involute curves. Although most of
them are expressed only by an integral form of the tangent
vector, it is possible to interactively generate and deform
them and they are expected to be utilized for practical use
of industrial and graphical design. We reformulate the LA
curve with variational principle in order to analyze its prop-
erties.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling|curve, surface, solid and object represen-
tations

General Terms
Theory

Keywords
log-aesthetic curve, variational principle, radius of curva-
ture, differential equation

1. INTRODUCTION
The log-aesthetic curves include the logarithmic (equian-
gular) curve (the slope of the LCG: logarithmic curvature
graph α = 1), the clothoid curve (α = −1), the circle in-
volute (α = 2) and Nielsen’s spiral (α = 0). Recently the
generalized Cornu spiral[6] has been reported to include sev-
eral log-aesthetic curves since its curvature profile is given
by a rational linear function and so its LCG gradient is given
by a straight line function[4]. It is possible to generate and
deform the log-aesthetic curve in real time even if they are
expressed by integral forms using their unit tangent vectors
as integrands (α 6= 1, 2) and they are expected to be used in
practical applications [1, 20].

Furthermore recently Ziatdinov et al.[14] showed that the
log-aesthetic curve can be parametrically expressed in terms
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of incomplete gamma functions, which gives an exact ana-
lytic representation of a curve segment for any real value of
α and the computation time for generating a log-aesthetic
curve segment using the incomplete gamma functions is about
10 times faster than using direct numerical integration.

The discrete log-aesthetic filter based on the formulation of
the log-aesthetic curve has successfully been introduced not
to impose strong constraints on the designer’s activity, to
let him/her design freely and to embed the properties of
the log-aesthetic curves for complicated curves with both
increasing and decreasing curvature[8]. In this paper we
define the log-aesthetic curve based on variational principle
in order to clarify its properties.

The rest of the paper is organized as follows. Section 2 de-
scribes related work and sections 3 explains the formulation
of the log-aesthetic curve based on variational principle and
discusses a derivation of a non-linear ordinary differential
equation which is satisfied by the LA curve. Furthermore
it justifies the correctness of the variational formulation by
solving the ordinary differential equation derived from the
variational formulation. Finally, we conclude the paper in
section 4 with a discussion of future work.

2. RELATED WORK
In this section, we discuss related researches on the log-
aesthetic curve, curvature based energy functionals for fair
surfaces, and discrete filters.

2.1 Log-aesthetic Curve
Aesthetic curves were proposed by Harada et al.[5] as such
curves whose logarithmic distribution diagram of curvature
(LDDC) is approximated by a straight line. Miura et al.
[11, 7] derived analytical solutions of the curves whose loga-
rithmic curvature graph (LCG): an analytical version of the
LDDC[5] are strictly given by a straight line and proposed
these lines as general equations of aesthetic curves. Further-
more, Yoshida and Saito[12] analyzed the properties of the
curves expressed by the general equations and developed a
new method to interactively generate a curve by specify-
ing two end points and the tangent vectors there with three
control points as well as : the slope of the straight line of
the LCG. In this research, we call the curves expressed by
the general equations of aesthetic curves the log-aesthetic
curves.

The problems of the connection of plural log-aesthetic seg-

215



ments was dealt by Miura et al.[9] and an input method of
the compound-rhythm log-aesthetic curve which consists of
two log-aesthetic curve segments connected with C3 continu-
ity was proposed by Agari[1]. Furthermore an extension of
the planar log-aesthetic curve into space: the log-aesthetic
space curve was proposed by Miura et al.[10] and it was
classified by Yoshida and Saito[13]. This section discusses
several important properties of log-aesthetic curves. Note
that an aesthetic curve is a curve whose logarithmic curva-
ture graph is given by a straight line.

2.1.1 General Equations of Aesthetic Curves
For a given curve, we assume the arc length of the curve and
the radius of curvature are denoted by s and ρ, respectively.
The horizontal axis of the logarithmic curvature graph mea-
sures log ρ and the vertical axis measures log(ds/d(log ρ)) =
log(ρds/dρ). If the LCG is given by a straight line, there
exists a constant such that the following equation is satis-
fied:

log(ρds
dρ

) = α log ρ+ c (1)

where c is a constant. The above equation is called the fun-
damental equation of aesthetic curves[11]. Rewriting Eq.(1),
we obtain:

1
ρα−1

ds

dρ
= ec = c′ (2)

Hence there is some constant c′ such that:

ρα−1 dρ

ds
= c′ (3)

From the above equation, when α 6= 0, for some constants
c0 and c1 the first general equation of aesthetic curves

ρα = c0s+ c1 (4)

is obtained. If α = 0, we obtain the second general equation
of aesthetic curves

ρ = c0ec1s (5)

The curve which satisfies Eq.(4) or Eq.(5) is called the log-
aesthetic curve.

2.1.2 Parametric Expressions of the LA Curves
In this subsection, we will show parametric expressions of
the log-aesthetic curves. We assume that a curve satisfies
Eq.(4). Then

ρ(s) = (c0s+ c1)
1
α (6)

As s is the arc length, (refer to, for example, [2, 3]) and
there exists θ(s) satisfying the following two equations:

dx

ds
= cos θ, dy

ds
= sin θ (7)

Since ρ = 1/(dθ/ds),

dθ

ds
= (c0s+ c1)−

1
α (8)

If α 6= 1,

θ = α(c0s+ c1)
α−1
α

(α− 1)c0
+ c2 (9)

For a given curve C(s), if the start point of the curve is
given by P 0 = C(0),

C(s) = P 0 + eic2
∫ s

0
e
i
α(c0u+c1)

α−1
α

(α−1)c0 du (10)

where i is the imaginary unit. For the second general equa-
tion of aesthetic curves expressed by Eq.(5),

dθ

ds
= 1
c0
e−c1s (11)

θ = − 1
c0c1
ec1s + c2 (12)

Therefore the curve is given by

C(s) = P 0 + eic2
∫ s

0
e
− i
c0c1

e−c1u
du (13)

3. VARIATIONAL FORMULATION
In this section, at first we discuss about the variational
principle with a simple example and explain how to formu-
late the log-aesthetic curve, especially about the functional
which the log-aesthetic curve minimizes.

3.1 Variational Principle
The variational analysis deals with a problem where an ob-
jective functional in an integral form should be minimized
or maximized. For examples,

J =
∫ x2

x1

f(y, yx, x)dx (14)

where y is a function of x and yx is a derivative of y with
respect to x. y is unknown. The condition that J has a
stationary value is given by the following partial differential
equation:

∂f

∂y
− d
dx

∂f

∂yx
= 0 (15)

This equation is called the Euler equation. If f = f(y, yx),
i.e. f is given explicitly without x, the above equation means
that

f − yx
∂f

∂yx
= c (16)

where c is a constant.

The simplest example of the variational problem is to min-
imize the distance between two given points in the x − y
plane. An infinitesimal element of the distance is given by

ds =
√

(dx)2 + (dy)2 =
√

1 + y2
xdx (17)

and the distance J is given by

J =
∫ x2,y2

x1,y1

ds =
∫ x2

x1

√
1 + y2

xdx (18)

Hence f(y, yx, x) =
√

(1 + y2
x) and is given explicitly with-

out x. By Eq.(16) we obtain
1√

1 + y2
x

= c (19)

Therefore there exists a constant a such that yx = a. It
yields

y = ax+ b (20)
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Figure 1: A straight line segment in the s− σ plane
connecting two points (s1, σ1) and (s2, σ2).

where b is a constant as well as a. These constants are
determined by making the line pass through the given two
points (x1, y1) and (x2, y2).

3.2 Variational Formulation of the LA Curve
In Eq.(4) if we substitute ρα with σ, then the equation is
given by

σ = c0s+ c1 (21)
The above equation means that the log-aesthetic curve is
given by a straight line in the s−σ plane where the horizontal
and vertical axes are the arc length s and σ, respectively to
connect two given points (s1, σ1) and (s2, σ2) as shown in
Fig.1. In this case the following objective functional JLAC
is minimized.

JLAC =
∫ s2

s1

√
1 + σ2

sds =
∫ s2

s1

√
1 + α2ρ2α−2ρ2

sds (22)

3.2.1 α = 1
If α = 1, the curve is a logarithmic (equiangular) curve. For
the curve f in Eq.(22)is given by

f =
√

1 + ρ2
s (23)

and it means that in the plane whose horizontal and vertical
axes are the arc length s and the radius of curvature ρ the
shortest curve connecting two points (s1, ρ1) and (s2, ρ2) is
a logarithmic spiral.

3.2.2 α = −1
If α = −1, the curve is a clothoid curve. For the curve f in
Eq.(22) is given by

f =
√

1 + κ2
s (24)

and it means that in the plane whose horizontal and vertical
axes are the arc length s and the curvature κ = 1/ρ the
shortest curve connecting two points (s1, κ1) and (s2, κ2) is
a clothoid curve.

3.3 Generalization of the Parameter
We assume the curve is defined by a general parameter in-
stead of the arc length s. Then

ds =
√
x2
t + y2

t dt

ρs =
dρ
dt
ds
dt

= ρt√
x2
t + y2

t

(25)

Eq.(22) is given by

JLAC =
∫ t2
t1

√
1 + α2ρ2α−1 ρ2

t

x2
t + y2

t

√
x2
t + y2

t dt

=
∫ t2
t1

√
x2
t + y2

t + α2ρ2α−2ρ2
tdt (26)

Therefore

f(t) =
√
x2
t + y2

t + α2ρ2α−2ρ2
t (27)

3.4 Non-linear Differential Equation
Here we will calculate Eq.(15) for Eq.(22).

∂f

∂ρ
= 1

2(1 + α2ρ2α−2ρ2
s)−

1
2α2(2α− 2)ρ2α−3ρ2

s

∂f

∂ρs
= (1 + α2ρ2α−2ρ2

s)−
1
2α2ρ2α−2ρs (28)

Furthermore
d

ds

∂f

∂ρs
= −1

2(1 + α2ρ2α−2ρ2
s)−

3
2 (α2(2α− 2)ρ2α−3ρ3

s

+2α2ρ2α−2ρsρss)α2ρ2α−2ρs

+(1 + α2ρ2α−2ρ2
s)−

1
2 (α2(2α− 2)ρ2α−3ρ2

s

+α2ρ2α−2ρss) (29)

Hence Eq.(15) is given by

∂f

∂ρ
− d
ds

∂f

∂ρs
= −α

2ρ2α−3((α− 1)ρ2
s + ρρss)

(1 + α2ρ2α−2ρ2
s)

3
2

= 0 (30)

Therefore

(α− 1)ρ2
s + ρρss = 0 (31)

On the other hand, since for the log-aesthetic curve, ρα is a
linear function of s,

d2ρα

ds2
= αρα−2((α− 1)ρ2

s + ρρss) = 0 (32)

Hence

(α− 1)ρ2
s + ρρss = 0 (33)

The above equation is identical to Eq.(31).

Since ρ = 1/κ, ρs = −κs/κ2, and ρss = −(κssκ + 2κs)/κ3,
Eq.(31) can be rewritten as follows:

κss = (α+ 1)κ
2
s

κ
(34)

3.5 Solutions of (α− 1)ρ2
s + ρρss = 0

We will solve Eq.(31). Although this equation is a non-
linear second order ordinary differential equation with an
independent variable s, it does not include s explicitly. We
exchange the roles of ρ and s and let ρ be an independent
variable and s be a dependent one. Since ρs = 1/sρ, ρss =
−sρρ/s3ρ, Eq.(31) is rewritten as

α− 1
s2ρ
− ρsρρ
s3ρ

= 0

(α− 1)sρ − ρsρρ = 0 (35)
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Let t = sρ, then

tρ = (α− 1) t
ρ

(36)

Note that the above equation is one of Abel’s ordinary dif-
ferential equations (y′(x) = f(x) + g(x)y(x) + h(x)y(x)2 +
k(x)y(x)3). Hence

t = c0rα−1 (37)

If α 6= 0,

s = c0
α
ρα + c1 (38)

If α = 0,

s = c0 log r + c1 (39)

The above two equations are the same as those of the log-
aesthetic curve.

4. SPACE CURVE
The log-aesthetic space curve was proposed by Miura et
al.[10] and they used the Frenet-Serret formula (for example,
see [3]).

4.1 The Frenet-Serret formula
For a space curve C(s) parameterized by s, let its unit tan-
gent vector to be t, unit principal normal vector n, and unit
binormal vector b. These vectors are related by the Frenet-
Serret formula as follows:

dC(s)
ds

= t,
dt

ds
= κn,

dn

ds
= −κt+ τb, db

ds
= −τn (40)

where κ and τ are the curvature and torsion, respectively.

The plane curve has a constant binormal vector and its tor-
sion remains 0. But we have to consider its change for the
space curve. Hence first, we define self-affinity of the space
curve and next we define the aesthetic space curve as the
curve who has self-affinity.

Similar to self-affinity of the plane curve, we define self-
affinity of the space curve as follows. For a curve generated
by removing arbitrary head portion of the original curve,
by scaling it with different factors in its tangent, principal
normal and binormal directions on every point on the curve,
if the original curve is obtained, then the curve has self-
affinity.

Since the curvature and torsion, or their reciprocals, i.e.,
the radius of curvature and radius of torsion can be inde-
pendently specified, for the radius of torsion µ = 1/τ , we
assume that an equation similar to Eq.(1) is satisfied as fol-
lows:

log(µ ds
dµ

) = β logµ+ d (41)

where β and d are constants. Then

µβ−1 dµ

ds
= d0 (42)

where d0 is a constant. As Miura et al.[10] indicated, similar
to the argument that shows that a sufficient and necessary

condition to have self-affinity of the plane curve is expressed
by Eq.(3), it can be shown that a sufficient and necessary
condition to have self-affinity of the space curve is expressed
by Eqs.(3) and (42).

From Eq.(42), when β 6= 0, for two constants d0 and d1 the
first general equation of aesthetic curves on the radius of
torsion

µβ = d0s+ d1 (43)
is obtained. If β = 0, we obtain the second general equation
of aesthetic curves on the radius of torsion

µ = d0e
d1s (44)

The Frenet-Serret formula can be considered to be simul-
tanious differential equations and an example calculated by
their numerial integration is shown in Fig.2. The top and
bottom figures shows the same five curves from different
viewpoints and the curve drawn at the bottoms is identical
to a logarithmic spiral whose torsion is always 0 and radius
of curvature is given by a linear function of the arc length.
The other curves have the same start point and radius of
curvature as the logarithmic spiral and their torsion is given
by a linear function of the arc length with β = 1. The upper
curves have smaller coefficient of the linear function for the
arc length (larger torsion). For each curve, at the start and
end points, and two points on the curve, we draw the tan-
gent, principal normal and binormal vectors of the moving
frame (Frenet frame) as short slim cyliders.

Figure 2: Examples of the aesthetic space curve
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4.2 Variational Formulation
In Eq.(43) if we substitute µβ with φ, then the equation is
given by

φ = d0s+ d1 (45)

The above equation means that the log-aesthetic space curve
is given by a straight line in the s− σ − φ space where the
three axes are the arc length s, σ and φ to connect two given
points (s1, σ1, φ1) and (s2, σ2, φ2) as shown in Fig.3. In this
case the following objective functional JLASC is minimized.

JLASC =
∫ s2

s1

√
1 + σ2

s + φ2
sds

=
∫ s2

s1

√
1 + α2ρ2α−2ρ2

s + β2µ2β−2µ2
sds (46)

s

σ=ρα

(s
1
,σ
1
,φ

1
) (s

2
,σ
2
,φ

2
)

φ=µβ

Figure 3: A straight line segment in the s−σ−φ space
connecting two points (s1, σ1, φ1) and (s2, σ2, φ2).

The variational problem with n dependent variables is to
minimize or maximize the following objective function

Jm =
∫ x2

x1

f(y1, y1x, y2, y2x, · · · , yn, ynx, x)dx (47)

where yi (i = 1, 2, · · · , n) are functions of x and yix is a
derivative of yi with respect to x. yi’s are unknown. The
Euler equations for the above functional are

∂f

∂yi
− d
dx

∂f

∂yix
= 0 (i = 1, 2, · · · , n) (48)

For Eq.(46), the Euler equations are given by Eq.(31) and
the following equation

(β − 1)µ2
s + µµss = 0 (49)

5. CONCLUSIONS
We have reformulated the log-aesthetic curve by use of vari-
ational principle in order to analyze its properties. We have
also derived a non-linear ordinary differential equation based
on the variational formulation and justified the correctness
of the variational formulation by solving it. Furthermore
we have reformulated the log-aesthetic space curve and de-
rived its non-linear ordinary differential equations in a sim-
ilar manner.

As future work, we will define the log-aesthetic surface based
on variational principle based on this research.
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